A comprehensive collection of documentation templates, guides, and best practices designed to provide optimal context for Large Language Models (LLMs) when working on software development projects.
This repository contains markdown files and templates specifically crafted to:
- Provide rich, structured context for AI coding agents
- Enable autonomous implementation of complex features
- Standardize documentation practices for AI-assisted development
- Bridge the gap between human requirements and AI implementation
ai_ready_docs/
├── README.md # This file
├── LICENSE # MIT License
├── templates/ # Reusable templates
│ ├── ticket-templates/ # Issue and ticket templates
│ ├── documentation-templates/ # Documentation templates
│ └── project-templates/ # Project structure templates
├── guides/ # Implementation guides
│ ├── getting-started/ # Quick start guides
│ ├── best-practices/ # Best practice documentation
│ └── examples/ # Real-world examples
├── reference/ # Reference materials
│ ├── patterns/ # Common patterns and approaches
│ ├── checklists/ # Validation checklists
│ └── glossary/ # Terminology and definitions
└── docs/ # Project documentation
├── contributing/ # Contribution guidelines
└── usage/ # Usage documentation
- Browse Templates: Start with the templates in
/templates/to find structures for your documentation needs - Read Guides: Check
/guides/getting-started/for implementation guidance - Reference Materials: Use
/reference/for patterns, checklists, and terminology - Examples: Explore
/guides/examples/for real-world usage patterns
- System architecture mapping
- Decision rationale documentation
- Domain knowledge integration
- Data flow visualization
- Progressive implementation plans
- Clear dependency mapping
- Verification strategies
- Error recovery patterns
- Ticket and issue templates
- Documentation templates
- Project structure templates
- Testing and validation templates
- AI-Assisted Development: Provide structured context for coding agents
- Project Documentation: Standardize documentation across projects
- Knowledge Transfer: Capture and transfer domain knowledge effectively
- Quality Assurance: Ensure consistent documentation standards
We welcome contributions! Please see our contributing guidelines for details on:
- How to propose new templates
- Documentation standards
- Review process
- Code of conduct
This project is licensed under the MIT License - see the LICENSE file for details.
- AI-Ready Ticket Template - Comprehensive ticket template for AI agents
- Best Practices Guide - Documentation best practices
- Pattern Library - Common implementation patterns
Good documentation should be:
- Context-Rich: Provide sufficient background for autonomous implementation
- Structured: Follow consistent patterns for easy parsing
- Actionable: Include clear next steps and validation criteria
- Maintainable: Easy to update and extend over time
This repository is designed to evolve with the AI development ecosystem. We encourage feedback and contributions to improve the effectiveness of AI-assisted development workflows.