forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclosest-node-to-path-in-tree.py
309 lines (268 loc) · 9.81 KB
/
closest-node-to-path-in-tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
# Time: O(n + q)
# Space: O(n + q)
import collections
from functools import partial
# Template:
# https://github.com/kamyu104/GoogleKickStart-2021/blob/main/Round%20H/dependent_events3.py
# Tarjan's Offline LCA Algorithm
class UnionFind(object): # Time: O(n * alpha(n)), Space: O(n)
def __init__(self, n):
self.set = range(n)
self.rank = [0]*n
self.ancestor = range(n) # added
def find_set(self, x):
stk = []
while self.set[x] != x: # path compression
stk.append(x)
x = self.set[x]
while stk:
self.set[stk.pop()] = x
return x
def union_set(self, x, y):
x, y = self.find_set(x), self.find_set(y)
if x == y:
return False
if self.rank[x] > self.rank[y]: # union by rank
x, y = y, x
self.set[x] = self.set[y]
if self.rank[x] == self.rank[y]:
self.rank[y] += 1
return True
def find_ancestor_of_set(self, x): # added
return self.ancestor[self.find_set(x)]
def update_ancestor_of_set(self, x): # added
self.ancestor[self.find_set(x)] = x
class TreeInfos(object): # Time: O(N), Space: O(N + Q), N is the number of nodes
def __init__(self, children, pairs):
def preprocess(curr, parent):
# depth of the node i
D[curr] = 1 if parent == -1 else D[parent]+1
def divide(curr, parent):
stk.append(partial(postprocess, curr))
for i in reversed(xrange(len(children[curr]))):
child = children[curr][i]
if child == parent:
continue
stk.append(partial(conquer, child, curr))
stk.append(partial(divide, child, curr))
stk.append(partial(preprocess, curr, parent))
def conquer(curr, parent):
uf.union_set(curr, parent)
uf.update_ancestor_of_set(parent)
def postprocess(u):
lookup[u] = True
for v in pairs[u]:
if not lookup[v]:
continue
lca[min(u, v), max(u, v)] = uf.find_ancestor_of_set(v)
N = len(children)
D, uf, lca = [0]*N, UnionFind(N), {}
stk, lookup = [], [False]*N
stk.append(partial(divide, 0, -1))
while stk:
stk.pop()()
self.D, self.lca = D, lca
# Tarjan's Offline LCA Algorithm
class Solution(object):
def closestNode(self, n, edges, query):
"""
:type n: int
:type edges: List[List[int]]
:type query: List[List[int]]
:rtype: List[int]
"""
adj = [[] for _ in xrange(n)]
for u, v in edges:
adj[u].append(v), adj[v].append(u)
pairs = collections.defaultdict(set)
for start, end, node in query:
pairs[start].add(end), pairs[end].add(start)
pairs[start].add(node), pairs[node].add(start)
pairs[end].add(node), pairs[node].add(end)
tree_infos = TreeInfos(adj, pairs)
return [max((tree_infos.lca[min(x, y), max(x, y)] for x, y in ((start, end), (start, node), (end, node))), key=lambda x: tree_infos.D[x]) for start, end, node in query]
# Time: O(nlogn + qlogn)
# Space: O(nlogn)
from functools import partial
# Template:
# https://github.com/kamyu104/GoogleKickStart-2021/blob/main/Round%20H/dependent_events2.py
class TreeInfos2(object): # Time: O(NlogN), Space: O(NlogN), N is the number of nodes
def __init__(self, children): # modified
def preprocess(curr, parent):
# depth of the node i
D[curr] = 1 if parent == -1 else D[parent]+1
# ancestors of the node i
if parent != -1:
P[curr].append(parent)
i = 0
while i < len(P[curr]) and i < len(P[P[curr][i]]):
P[curr].append(P[P[curr][i]][i])
i += 1
# the subtree of the node i is represented by traversal index L[i]..R[i]
C[0] += 1
L[curr] = C[0]
def divide(curr, parent):
stk.append(partial(postprocess, curr))
for i in reversed(xrange(len(children[curr]))):
child = children[curr][i]
if child == parent:
continue
stk.append(partial(divide, child, curr))
stk.append(partial(preprocess, curr, parent))
def postprocess(curr):
R[curr] = C[0]
N = len(children)
L, R, D, P, C = [0]*N, [0]*N, [0]*N, [[] for _ in xrange(N)], [-1]
stk = []
stk.append(partial(divide, 0, -1))
while stk:
stk.pop()()
assert(C[0] == N-1)
self.L, self.R, self.D, self.P = L, R, D, P
# Template:
# https://github.com/kamyu104/FacebookHackerCup-2019/blob/master/Final%20Round/little_boat_on_the_sea.py
def is_ancestor(self, a, b): # includes itself
return self.L[a] <= self.L[b] <= self.R[b] <= self.R[a]
def lca(self, a, b):
if self.D[a] > self.D[b]:
a, b = b, a
if self.is_ancestor(a, b):
return a
for i in reversed(xrange(len(self.P[a]))): # O(logN)
if i < len(self.P[a]) and not self.is_ancestor(self.P[a][i], b):
a = self.P[a][i]
return self.P[a][0]
# binary lifting (online lca algorithm)
class Solution2(object):
def closestNode(self, n, edges, query):
"""
:type n: int
:type edges: List[List[int]]
:type query: List[List[int]]
:rtype: List[int]
"""
adj = [[] for _ in xrange(n)]
for u, v in edges:
adj[u].append(v), adj[v].append(u)
tree_infos = TreeInfos2(adj)
return [max((tree_infos.lca(x, y) for x, y in ((start, end), (start, node), (end, node))), key=lambda x: tree_infos.D[x]) for start, end, node in query]
# Time: O(n + q * h)
# Space: O(n)
from functools import partial
# Template:
# https://github.com/kamyu104/GoogleKickStart-2021/blob/main/Round%20H/dependent_events2.py
class TreeInfos3(object): # Time: O(N), Space: O(N), N is the number of nodes
def __init__(self, children): # modified
def preprocess(curr, parent):
# depth of the node i
D[curr] = 1 if parent == -1 else D[parent]+1
# ancestors of the node i
P[curr] = parent
def divide(curr, parent):
for i in reversed(xrange(len(children[curr]))):
child = children[curr][i]
if child == parent:
continue
stk.append(partial(divide, child, curr))
stk.append(partial(preprocess, curr, parent))
N = len(children)
D, P = [0]*N, [0]*N
stk = []
stk.append(partial(divide, 0, -1))
while stk:
stk.pop()()
self.D, self.P = D, P
def lca(self, a, b): # Time: O(h)
while self.D[a] > self.D[b]:
a = self.P[a]
while self.D[a] < self.D[b]:
b = self.P[b]
while a != b:
a, b = self.P[a], self.P[b]
return a
# lca
class Solution3(object):
def closestNode(self, n, edges, query):
"""
:type n: int
:type edges: List[List[int]]
:type query: List[List[int]]
:rtype: List[int]
"""
adj = [[] for _ in xrange(n)]
for u, v in edges:
adj[u].append(v), adj[v].append(u)
tree_infos = TreeInfos3(adj)
return [max((tree_infos.lca(x, y) for x, y in ((start, end), (start, node), (end, node))), key=lambda x: tree_infos.D[x]) for start, end, node in query]
# Time: O(n^2 + q * n)
# Space: O(n^2)
# bfs
class Solution4(object):
def closestNode(self, n, edges, query):
"""
:type n: int
:type edges: List[List[int]]
:type query: List[List[int]]
:rtype: List[int]
"""
def bfs(adj, root):
dist = [len(adj)]*len(adj)
q = [root]
dist[root] = 0
d = 0
while q:
new_q = []
for u in q:
for v in adj[u]:
if d+1 >= dist[v]:
continue
dist[v] = d+1
new_q.append(v)
q = new_q
d += 1
return dist
adj = [[] for _ in xrange(n)]
for u, v in edges:
adj[u].append(v), adj[v].append(u)
dist = [bfs(adj, i) for i in xrange(n)]
result = []
for start, end, node in query:
x = end
while start != end:
if dist[node][start] < dist[node][x]:
x = start
start = next(u for u in adj[start] if dist[u][end] < dist[start][end])
result.append(x)
return result
# Time: O(n^2 + q * n)
# Space: O(n^2)
# bfs
class Solution5(object):
def closestNode(self, n, edges, query):
"""
:type n: int
:type edges: List[List[int]]
:type query: List[List[int]]
:rtype: List[int]
"""
def bfs(adj, root):
dist = [len(adj)]*len(adj)
q = [root]
dist[root] = 0
d = 0
while q:
new_q = []
for u in q:
for v in adj[u]:
if d+1 >= dist[v]:
continue
dist[v] = d+1
new_q.append(v)
q = new_q
d += 1
return dist
adj = [[] for _ in xrange(n)]
for u, v in edges:
adj[u].append(v), adj[v].append(u)
dist = [bfs(adj, i) for i in xrange(n)]
return [max((i for i in xrange(n) if dist[start][node]+dist[node][end]-2*dist[node][i] == dist[start][i]+dist[i][end]), key=lambda x: dist[node][x]) for start, end, node in query]