forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsecond-minimum-time-to-reach-destination.cpp
119 lines (113 loc) · 3.83 KB
/
second-minimum-time-to-reach-destination.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
// Time: O(|V| + |E|) = O(|E|) since graph is connected, O(|E|) >= O(|V|)
// Space: O(|V| + |E|) = O(|E|)
class Solution {
public:
int secondMinimum(int n, vector<vector<int>>& edges, int time, int change) {
vector<vector<int>> adj(n);
for (const auto& edge : edges) {
adj[edge[0] - 1].emplace_back(edge[1] - 1);
adj[edge[1] - 1].emplace_back(edge[0] - 1);
}
return calc_time(time, change, bi_bfs(adj, 0, n - 1));
}
private:
// Template:
// https://github.com/kamyu104/LeetCode-Solutions/blob/master/C++/nearest-exit-from-entrance-in-maze.cpp
int bi_bfs(const vector<vector<int>>& adj, int start, int end) {
unordered_set<int> left = {start}, right = {end}, lookup;
int result = 0, steps = 0;
while (!empty(left) && (!result || result + 2 > steps)) { // modified
for (const auto& u : left) {
lookup.emplace(u);
}
unordered_set<int> new_left;
for (const auto& u : left) {
if (right.count(u)) {
if (!result) { // modified
result = steps;
} else if (result < steps) { // modified
return result + 1;
}
}
for (const auto& v : adj[u]) {
if (lookup.count(v)) {
continue;
}
new_left.emplace(v);
}
}
left = move(new_left);
++steps;
if (size(left) > size(right)) {
swap(left, right);
}
}
return result + 2; // modified
}
int calc_time(int time, int change, int dist) {
int result = 0;
while (dist--) {
if (result / change % 2) {
result = (result / change + 1) * change;
}
result += time;
}
return result;
}
};
// Time: O(|V| + |E|) = O(|E|) since graph is connected, O(|E|) >= O(|V|)
// Space: O(|V| + |E|) = O(|E|)
class Solution2 {
public:
int secondMinimum(int n, vector<vector<int>>& edges, int time, int change) {
vector<vector<int>> adj(n);
for (const auto& edge : edges) {
adj[edge[0] - 1].emplace_back(edge[1] - 1);
adj[edge[1] - 1].emplace_back(edge[0] - 1);
}
const auto& dist_to_end = bfs(adj, 0);
const auto& dist_to_start = bfs(adj, n - 1);
int dist = dist_to_end[n - 1] + 2; // always exists
for (int i = 0; i < n; ++i) {
if (dist_to_end[i] + dist_to_start[i] == dist_to_end[n - 1]) {
continue;
}
dist = min(dist, dist_to_end[i] + dist_to_start[i]); // find second min
if (dist == dist_to_end[n - 1] + 1) {
break;
}
}
return calc_time(time, change, dist);
}
private:
vector<int> bfs(const vector<vector<int>>& adj, int start) {
static const int INF = numeric_limits<int>::max();
vector<int> q = {start};
vector<int> dist(size(adj), INF);
dist[start] = 0;
while (!empty(q)) {
vector<int> new_q;
for (const auto& u : q) {
for (const auto& v: adj[u]) {
if (dist[v] != INF) {
continue;
}
dist[v] = dist[u] + 1;
new_q.emplace_back(v);
}
}
q = move(new_q);
}
return dist;
}
int calc_time(int time, int change, int dist) {
int result = 0;
while (dist--) {
if (result / change % 2) {
result = (result / change + 1) * change;
}
result += time;
}
return result;
}
};