forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcount-ways-to-make-array-with-product.cpp
97 lines (90 loc) · 3.04 KB
/
count-ways-to-make-array-with-product.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
// Time: O(sqrt(m) + n + q * (logm + sqrt(m)/log(sqrt(m)))), m is max(k for _, k in queries)
// Space: O(sqrt(m) + n + logm)
class Solution {
public:
vector<int> waysToFillArray(vector<vector<int>>& queries) {
int m = 0;
for (const auto& q : queries) {
m = max(m, q[1]);
}
const auto& primes = linear_sieve_of_eratosthenes(sqrt(m));
const auto& prime_factors = [&](int x) {
unordered_map<int, int> factors;
for (const auto& p : primes) {
if (x < p) {
break;
}
for (; x % p == 0; x /= p) {
++factors[p];
}
}
if (x != 1) {
++factors[x];
}
return factors;
};
vector<int> result;
for (const auto& q : queries) {
const int n = q[0], k = q[1];
int64_t total = 1;
for (const auto& [_, c] : prime_factors(k)) {
total = mulmod(total, nCr(n + c - 1, c)); // H(n, c) = nCr(n + c - 1, n)
}
result.emplace_back(total);
}
return result;
}
private:
int nCr(int n, int k) {
while (size(inv_) <= n) { // lazy initialization
fact_.emplace_back(mulmod(fact_.back(), size(inv_)));
inv_.emplace_back(mulmod(inv_[MOD % size(inv_)], MOD - MOD / size(inv_))); // https://cp-algorithms.com/algebra/module-inverse.html
inv_fact_.emplace_back(mulmod(inv_fact_.back(), inv_.back()));
}
return mulmod(mulmod(fact_[n], inv_fact_[n - k]), inv_fact_[k]);
}
uint32_t addmod(uint32_t a, uint32_t b) { // avoid overflow
a %= MOD, b %= MOD;
if (MOD - a <= b) {
b -= MOD; // relied on unsigned integer overflow in order to give the expected results
}
return a + b;
}
// reference: https://stackoverflow.com/questions/12168348/ways-to-do-modulo-multiplication-with-primitive-types
uint32_t mulmod(uint32_t a, uint32_t b) { // avoid overflow
a %= MOD, b %= MOD;
uint32_t result = 0;
if (a < b) {
swap(a, b);
}
while (b > 0) {
if (b % 2 == 1) {
result = addmod(result, a);
}
a = addmod(a, a);
b /= 2;
}
return result;
}
vector<int64_t> linear_sieve_of_eratosthenes(int64_t n) { // Time: O(n), Space: O(n)
vector<int64_t> spf(n + 1, -1);
vector<int64_t> primes;
for (int64_t i = 2; i <= n; ++i) {
if (spf[i] == -1) {
spf[i] = i;
primes.emplace_back(i);
}
for (const auto& p : primes) {
if (i * p > n || p > spf[i]) {
break;
}
spf[i * p] = p;
}
}
return primes;
}
static const uint32_t MOD = 1e9 + 7;
vector<int> fact_ = {1, 1};
vector<int> inv_ = {1, 1};
vector<int> inv_fact_ = {1, 1};
};