-
Notifications
You must be signed in to change notification settings - Fork 460
/
Copy pathset.res
711 lines (640 loc) · 16.9 KB
/
set.res
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
/* ************************************************************************ */
/* */
/* OCaml */
/* */
/* Xavier Leroy, projet Cristal, INRIA Rocquencourt */
/* */
/* Copyright 1996 Institut National de Recherche en Informatique et */
/* en Automatique. */
/* */
/* All rights reserved. This file is distributed under the terms of */
/* the GNU Lesser General Public License version 2.1, with the */
/* special exception on linking described in the file LICENSE. */
/* */
/* ************************************************************************ */
/* Sets over ordered types */
module type OrderedType = {
type t
let compare: (t, t) => int
}
module type S = {
type elt
type t
let empty: t
let is_empty: t => bool
let mem: (elt, t) => bool
let add: (elt, t) => t
let singleton: elt => t
let remove: (elt, t) => t
let union: (t, t) => t
let inter: (t, t) => t
let diff: (t, t) => t
let compare: (t, t) => int
let equal: (t, t) => bool
let subset: (t, t) => bool
let iter: (elt => unit, t) => unit
let map: (elt => elt, t) => t
let fold: ((elt, 'a) => 'a, t, 'a) => 'a
let for_all: (elt => bool, t) => bool
let exists: (elt => bool, t) => bool
let filter: (elt => bool, t) => t
let partition: (elt => bool, t) => (t, t)
let cardinal: t => int
let elements: t => list<elt>
let min_elt: t => elt
let min_elt_opt: t => option<elt>
let max_elt: t => elt
let max_elt_opt: t => option<elt>
let choose: t => elt
let choose_opt: t => option<elt>
let split: (elt, t) => (t, bool, t)
let find: (elt, t) => elt
let find_opt: (elt, t) => option<elt>
let find_first: (elt => bool, t) => elt
let find_first_opt: (elt => bool, t) => option<elt>
let find_last: (elt => bool, t) => elt
let find_last_opt: (elt => bool, t) => option<elt>
let of_list: list<elt> => t
}
module Make = (Ord: OrderedType) => {
type elt = Ord.t
type rec t = Empty | Node({l: t, v: elt, r: t, h: int})
/* Sets are represented by balanced binary trees (the heights of the
children differ by at most 2 */
let height = param =>
switch param {
| Empty => 0
| Node({h}) => h
}
/* Creates a new node with left son l, value v and right son r.
We must have all elements of l < v < all elements of r.
l and r must be balanced and | height l - height r | <= 2.
Inline expansion of height for better speed. */
let create = (l, v, r) => {
let hl = switch l {
| Empty => 0
| Node({h}) => h
}
let hr = switch r {
| Empty => 0
| Node({h}) => h
}
Node({
l,
v,
r,
h: if hl >= hr {
hl + 1
} else {
hr + 1
},
})
}
/* Same as create, but performs one step of rebalancing if necessary.
Assumes l and r balanced and | height l - height r | <= 3.
Inline expansion of create for better speed in the most frequent case
where no rebalancing is required. */
let bal = (l, v, r) => {
let hl = switch l {
| Empty => 0
| Node({h}) => h
}
let hr = switch r {
| Empty => 0
| Node({h}) => h
}
if hl > hr + 2 {
switch l {
| Empty => invalid_arg("Set.bal")
| Node({l: ll, v: lv, r: lr}) =>
if height(ll) >= height(lr) {
create(ll, lv, create(lr, v, r))
} else {
switch lr {
| Empty => invalid_arg("Set.bal")
| Node({l: lrl, v: lrv, r: lrr}) => create(create(ll, lv, lrl), lrv, create(lrr, v, r))
}
}
}
} else if hr > hl + 2 {
switch r {
| Empty => invalid_arg("Set.bal")
| Node({l: rl, v: rv, r: rr}) =>
if height(rr) >= height(rl) {
create(create(l, v, rl), rv, rr)
} else {
switch rl {
| Empty => invalid_arg("Set.bal")
| Node({l: rll, v: rlv, r: rlr}) => create(create(l, v, rll), rlv, create(rlr, rv, rr))
}
}
}
} else {
Node({
l,
v,
r,
h: if hl >= hr {
hl + 1
} else {
hr + 1
},
})
}
}
/* Insertion of one element */
let rec add = (x, param) =>
switch param {
| Empty => Node({l: Empty, v: x, r: Empty, h: 1})
| Node({l, v, r}) as t =>
let c = Ord.compare(x, v)
if c == 0 {
t
} else if c < 0 {
let ll = add(x, l)
if l === ll {
t
} else {
bal(ll, v, r)
}
} else {
let rr = add(x, r)
if r === rr {
t
} else {
bal(l, v, rr)
}
}
}
let singleton = x => Node({l: Empty, v: x, r: Empty, h: 1})
/* Beware: those two functions assume that the added v is *strictly*
smaller (or bigger) than all the present elements in the tree; it
does not test for equality with the current min (or max) element.
Indeed, they are only used during the "join" operation which
respects this precondition.
*/
let rec add_min_element = (x, param) =>
switch param {
| Empty => singleton(x)
| Node({l, v, r}) => bal(add_min_element(x, l), v, r)
}
let rec add_max_element = (x, param) =>
switch param {
| Empty => singleton(x)
| Node({l, v, r}) => bal(l, v, add_max_element(x, r))
}
/* Same as create and bal, but no assumptions are made on the
relative heights of l and r. */
let rec join = (l, v, r) =>
switch (l, r) {
| (Empty, _) => add_min_element(v, r)
| (_, Empty) => add_max_element(v, l)
| (Node({l: ll, v: lv, r: lr, h: lh}), Node({l: rl, v: rv, r: rr, h: rh})) =>
if lh > rh + 2 {
bal(ll, lv, join(lr, v, r))
} else if rh > lh + 2 {
bal(join(l, v, rl), rv, rr)
} else {
create(l, v, r)
}
}
/* Smallest and greatest element of a set */
let rec min_elt = param =>
switch param {
| Empty => raise(Not_found)
| Node({l: Empty, v}) => v
| Node({l}) => min_elt(l)
}
let rec min_elt_opt = param =>
switch param {
| Empty => None
| Node({l: Empty, v}) => Some(v)
| Node({l}) => min_elt_opt(l)
}
let rec max_elt = param =>
switch param {
| Empty => raise(Not_found)
| Node({v, r: Empty}) => v
| Node({r}) => max_elt(r)
}
let rec max_elt_opt = param =>
switch param {
| Empty => None
| Node({v, r: Empty}) => Some(v)
| Node({r}) => max_elt_opt(r)
}
/* Remove the smallest element of the given set */
let rec remove_min_elt = param =>
switch param {
| Empty => invalid_arg("Set.remove_min_elt")
| Node({l: Empty, r}) => r
| Node({l, v, r}) => bal(remove_min_elt(l), v, r)
}
/* Merge two trees l and r into one.
All elements of l must precede the elements of r.
Assume | height l - height r | <= 2. */
let merge = (t1, t2) =>
switch (t1, t2) {
| (Empty, t) => t
| (t, Empty) => t
| (_, _) => bal(t1, min_elt(t2), remove_min_elt(t2))
}
/* Merge two trees l and r into one.
All elements of l must precede the elements of r.
No assumption on the heights of l and r. */
let concat = (t1, t2) =>
switch (t1, t2) {
| (Empty, t) => t
| (t, Empty) => t
| (_, _) => join(t1, min_elt(t2), remove_min_elt(t2))
}
/* Splitting. split x s returns a triple (l, present, r) where
- l is the set of elements of s that are < x
- r is the set of elements of s that are > x
- present is false if s contains no element equal to x,
or true if s contains an element equal to x. */
let rec split = (x, param) =>
switch param {
| Empty => (Empty, false, Empty)
| Node({l, v, r}) =>
let c = Ord.compare(x, v)
if c == 0 {
(l, true, r)
} else if c < 0 {
let (ll, pres, rl) = split(x, l)
(ll, pres, join(rl, v, r))
} else {
let (lr, pres, rr) = split(x, r)
(join(l, v, lr), pres, rr)
}
}
/* Implementation of the set operations */
let empty = Empty
let is_empty = param =>
switch param {
| Empty => true
| _ => false
}
let rec mem = (x, param) =>
switch param {
| Empty => false
| Node({l, v, r}) =>
let c = Ord.compare(x, v)
c == 0 ||
mem(
x,
if c < 0 {
l
} else {
r
},
)
}
let rec remove = (x, param) =>
switch param {
| Empty => Empty
| Node({l, v, r}) as t =>
let c = Ord.compare(x, v)
if c == 0 {
merge(l, r)
} else if c < 0 {
let ll = remove(x, l)
if l === ll {
t
} else {
bal(ll, v, r)
}
} else {
let rr = remove(x, r)
if r === rr {
t
} else {
bal(l, v, rr)
}
}
}
let rec union = (s1, s2) =>
switch (s1, s2) {
| (Empty, t2) => t2
| (t1, Empty) => t1
| (Node({l: l1, v: v1, r: r1, h: h1}), Node({l: l2, v: v2, r: r2, h: h2})) =>
if h1 >= h2 {
if h2 == 1 {
add(v2, s1)
} else {
let (l2, _, r2) = split(v1, s2)
join(union(l1, l2), v1, union(r1, r2))
}
} else if h1 == 1 {
add(v1, s2)
} else {
let (l1, _, r1) = split(v2, s1)
join(union(l1, l2), v2, union(r1, r2))
}
}
let rec inter = (s1, s2) =>
switch (s1, s2) {
| (Empty, _) => Empty
| (_, Empty) => Empty
| (Node({l: l1, v: v1, r: r1}), t2) =>
switch split(v1, t2) {
| (l2, false, r2) => concat(inter(l1, l2), inter(r1, r2))
| (l2, true, r2) => join(inter(l1, l2), v1, inter(r1, r2))
}
}
let rec diff = (s1, s2) =>
switch (s1, s2) {
| (Empty, _) => Empty
| (t1, Empty) => t1
| (Node({l: l1, v: v1, r: r1}), t2) =>
switch split(v1, t2) {
| (l2, false, r2) => join(diff(l1, l2), v1, diff(r1, r2))
| (l2, true, r2) => concat(diff(l1, l2), diff(r1, r2))
}
}
type rec enumeration = End | More(elt, t, enumeration)
let rec cons_enum = (s, e) =>
switch s {
| Empty => e
| Node({l, v, r}) => cons_enum(l, More(v, r, e))
}
let rec compare_aux = (e1, e2) =>
switch (e1, e2) {
| (End, End) => 0
| (End, _) => -1
| (_, End) => 1
| (More(v1, r1, e1), More(v2, r2, e2)) =>
let c = Ord.compare(v1, v2)
if c != 0 {
c
} else {
compare_aux(cons_enum(r1, e1), cons_enum(r2, e2))
}
}
let compare = (s1, s2) => compare_aux(cons_enum(s1, End), cons_enum(s2, End))
let equal = (s1, s2) => compare(s1, s2) == 0
let rec subset = (s1, s2) =>
switch (s1, s2) {
| (Empty, _) => true
| (_, Empty) => false
| (Node({l: l1, v: v1, r: r1}), Node({l: l2, v: v2, r: r2}) as t2) =>
let c = Ord.compare(v1, v2)
if c == 0 {
subset(l1, l2) && subset(r1, r2)
} else if c < 0 {
subset(Node({l: l1, v: v1, r: Empty, h: 0}), l2) && subset(r1, t2)
} else {
subset(Node({l: Empty, v: v1, r: r1, h: 0}), r2) && subset(l1, t2)
}
}
let rec iter = (f, param) =>
switch param {
| Empty => ()
| Node({l, v, r}) =>
iter(f, l)
f(v)
iter(f, r)
}
let rec fold = (f, s, accu) =>
switch s {
| Empty => accu
| Node({l, v, r}) => fold(f, r, f(v, fold(f, l, accu)))
}
let rec for_all = (p, param) =>
switch param {
| Empty => true
| Node({l, v, r}) => p(v) && (for_all(p, l) && for_all(p, r))
}
let rec exists = (p, param) =>
switch param {
| Empty => false
| Node({l, v, r}) => p(v) || (exists(p, l) || exists(p, r))
}
let rec filter = (p, param) =>
switch param {
| Empty => Empty
| Node({l, v, r}) as t =>
/* call [p] in the expected left-to-right order */
let l' = filter(p, l)
let pv = p(v)
let r' = filter(p, r)
if pv {
if l === l' && r === r' {
t
} else {
join(l', v, r')
}
} else {
concat(l', r')
}
}
let rec partition = (p, param) =>
switch param {
| Empty => (Empty, Empty)
| Node({l, v, r}) =>
/* call [p] in the expected left-to-right order */
let (lt, lf) = partition(p, l)
let pv = p(v)
let (rt, rf) = partition(p, r)
if pv {
(join(lt, v, rt), concat(lf, rf))
} else {
(concat(lt, rt), join(lf, v, rf))
}
}
let rec cardinal = param =>
switch param {
| Empty => 0
| Node({l, r}) => cardinal(l) + 1 + cardinal(r)
}
let rec elements_aux = (accu, param) =>
switch param {
| Empty => accu
| Node({l, v, r}) => elements_aux(list{v, ...elements_aux(accu, r)}, l)
}
let elements = s => elements_aux(list{}, s)
let choose = min_elt
let choose_opt = min_elt_opt
let rec find = (x, param) =>
switch param {
| Empty => raise(Not_found)
| Node({l, v, r}) =>
let c = Ord.compare(x, v)
if c == 0 {
v
} else {
find(
x,
if c < 0 {
l
} else {
r
},
)
}
}
let rec find_first_aux = (v0, f, param) =>
switch param {
| Empty => v0
| Node({l, v, r}) =>
if f(v) {
find_first_aux(v, f, l)
} else {
find_first_aux(v0, f, r)
}
}
let rec find_first = (f, param) =>
switch param {
| Empty => raise(Not_found)
| Node({l, v, r}) =>
if f(v) {
find_first_aux(v, f, l)
} else {
find_first(f, r)
}
}
let rec find_first_opt_aux = (v0, f, param) =>
switch param {
| Empty => Some(v0)
| Node({l, v, r}) =>
if f(v) {
find_first_opt_aux(v, f, l)
} else {
find_first_opt_aux(v0, f, r)
}
}
let rec find_first_opt = (f, param) =>
switch param {
| Empty => None
| Node({l, v, r}) =>
if f(v) {
find_first_opt_aux(v, f, l)
} else {
find_first_opt(f, r)
}
}
let rec find_last_aux = (v0, f, param) =>
switch param {
| Empty => v0
| Node({l, v, r}) =>
if f(v) {
find_last_aux(v, f, r)
} else {
find_last_aux(v0, f, l)
}
}
let rec find_last = (f, param) =>
switch param {
| Empty => raise(Not_found)
| Node({l, v, r}) =>
if f(v) {
find_last_aux(v, f, r)
} else {
find_last(f, l)
}
}
let rec find_last_opt_aux = (v0, f, param) =>
switch param {
| Empty => Some(v0)
| Node({l, v, r}) =>
if f(v) {
find_last_opt_aux(v, f, r)
} else {
find_last_opt_aux(v0, f, l)
}
}
let rec find_last_opt = (f, param) =>
switch param {
| Empty => None
| Node({l, v, r}) =>
if f(v) {
find_last_opt_aux(v, f, r)
} else {
find_last_opt(f, l)
}
}
let rec find_opt = (x, param) =>
switch param {
| Empty => None
| Node({l, v, r}) =>
let c = Ord.compare(x, v)
if c == 0 {
Some(v)
} else {
find_opt(
x,
if c < 0 {
l
} else {
r
},
)
}
}
let try_join = (l, v, r) =>
/* [join l v r] can only be called when (elements of l < v <
elements of r); use [try_join l v r] when this property may
not hold, but you hope it does hold in the common case */
if (
(l == Empty || Ord.compare(max_elt(l), v) < 0) &&
(r == Empty || Ord.compare(v, min_elt(r)) < 0)
) {
join(l, v, r)
} else {
union(l, add(v, r))
}
let rec map = (f, param) =>
switch param {
| Empty => Empty
| Node({l, v, r}) as t =>
/* enforce left-to-right evaluation order */
let l' = map(f, l)
let v' = f(v)
let r' = map(f, r)
if l === l' && (v === v' && r === r') {
t
} else {
try_join(l', v', r')
}
}
let of_sorted_list = l => {
let rec sub = (n, l) =>
switch (n, l) {
| (0, l) => (Empty, l)
| (1, list{x0, ...l}) => (Node({l: Empty, v: x0, r: Empty, h: 1}), l)
| (2, list{x0, x1, ...l}) => (
Node({l: Node({l: Empty, v: x0, r: Empty, h: 1}), v: x1, r: Empty, h: 2}),
l,
)
| (3, list{x0, x1, x2, ...l}) => (
Node({
l: Node({l: Empty, v: x0, r: Empty, h: 1}),
v: x1,
r: Node({l: Empty, v: x2, r: Empty, h: 1}),
h: 2,
}),
l,
)
| (n, l) =>
let nl = n / 2
let (left, l) = sub(nl, l)
switch l {
| list{} => assert(false)
| list{mid, ...l} =>
let (right, l) = sub(n - nl - 1, l)
(create(left, mid, right), l)
}
}
fst(sub(List.length(l), l))
}
let of_list = l =>
switch l {
| list{} => empty
| list{x0} => singleton(x0)
| list{x0, x1} => add(x1, singleton(x0))
| list{x0, x1, x2} => add(x2, add(x1, singleton(x0)))
| list{x0, x1, x2, x3} => add(x3, add(x2, add(x1, singleton(x0))))
| list{x0, x1, x2, x3, x4} => add(x4, add(x3, add(x2, add(x1, singleton(x0)))))
| _ => of_sorted_list(List.sort_uniq(Ord.compare, l))
}
}