-
Notifications
You must be signed in to change notification settings - Fork 460
/
Copy pathlist.resi
333 lines (268 loc) · 12.2 KB
/
list.resi
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
/* ************************************************************************ */
/* */
/* OCaml */
/* */
/* Xavier Leroy, projet Cristal, INRIA Rocquencourt */
/* */
/* Copyright 1996 Institut National de Recherche en Informatique et */
/* en Automatique. */
/* */
/* All rights reserved. This file is distributed under the terms of */
/* the GNU Lesser General Public License version 2.1, with the */
/* special exception on linking described in the file LICENSE. */
/* */
/* ************************************************************************ */
/*** List operations.
Some functions are flagged as not tail-recursive. A tail-recursive
function uses constant stack space, while a non-tail-recursive function
uses stack space proportional to the length of its list argument, which
can be a problem with very long lists. When the function takes several
list arguments, an approximate formula giving stack usage (in some
unspecified constant unit) is shown in parentheses.
The above considerations can usually be ignored if your lists are not
longer than about 10000 elements.
*/
/** Return the length (number of elements) of the given list. */
let length: list<'a> => int
/** Compare the lengths of two lists. [compare_lengths l1 l2] is
equivalent to [compare (length l1) (length l2)], except that
the computation stops after itering on the shortest list.
@since 4.05.0
*/
let compare_lengths: (list<'a>, list<'b>) => int
/** Compare the length of a list to an integer. [compare_length_with l n] is
equivalent to [compare (length l) n], except that
the computation stops after at most [n] iterations on the list.
@since 4.05.0
*/
let compare_length_with: (list<'a>, int) => int
/** [cons x xs] is [x :: xs]
@since 4.03.0
*/
let cons: ('a, list<'a>) => list<'a>
/** Return the first element of the given list. Raise
[Failure "hd"] if the list is empty. */
let hd: list<'a> => 'a
/** Return the given list without its first element. Raise
[Failure "tl"] if the list is empty. */
let tl: list<'a> => list<'a>
/** Return the [n]-th element of the given list.
The first element (head of the list) is at position 0.
Raise [Failure "nth"] if the list is too short.
Raise [Invalid_argument "List.nth"] if [n] is negative. */
let nth: (list<'a>, int) => 'a
/** Return the [n]-th element of the given list.
The first element (head of the list) is at position 0.
Return [None] if the list is too short.
Raise [Invalid_argument "List.nth"] if [n] is negative.
@since 4.05
*/
let nth_opt: (list<'a>, int) => option<'a>
/** List reversal. */
let rev: list<'a> => list<'a>
/** [List.init len f] is [f 0; f 1; ...; f (len-1)], evaluated left to right.
@raise Invalid_argument if len < 0.
@since 4.06.0
*/
let init: (int, int => 'a) => list<'a>
/** Concatenate two lists. Same as the infix operator [@].
Not tail-recursive (length of the first argument). */
let append: (list<'a>, list<'a>) => list<'a>
/** [List.rev_append l1 l2] reverses [l1] and concatenates it to [l2].
This is equivalent to {!List.rev}[ l1 @ l2], but [rev_append] is
tail-recursive and more efficient. */
let rev_append: (list<'a>, list<'a>) => list<'a>
/** Concatenate a list of lists. The elements of the argument are all
concatenated together (in the same order) to give the result.
Not tail-recursive
(length of the argument + length of the longest sub-list). */
let concat: list<list<'a>> => list<'a>
/** An alias for [concat]. */
let flatten: list<list<'a>> => list<'a>
/* {1 Iterators} */
/** [List.iter f [a1; ...; an]] applies function [f] in turn to
[a1; ...; an]. It is equivalent to
[begin f a1; f a2; ...; f an; () end]. */
let iter: ('a => unit, list<'a>) => unit
/** Same as {!List.iter}, but the function is applied to the index of
the element as first argument (counting from 0), and the element
itself as second argument.
@since 4.00.0
*/
let iteri: ((int, 'a) => unit, list<'a>) => unit
/** [List.map f [a1; ...; an]] applies function [f] to [a1, ..., an],
and builds the list [[f a1; ...; f an]]
with the results returned by [f]. Not tail-recursive. */
let map: ('a => 'b, list<'a>) => list<'b>
/** Same as {!List.map}, but the function is applied to the index of
the element as first argument (counting from 0), and the element
itself as second argument. Not tail-recursive.
@since 4.00.0
*/
let mapi: ((int, 'a) => 'b, list<'a>) => list<'b>
/** [List.rev_map f l] gives the same result as
{!List.rev}[ (]{!List.map}[ f l)], but is tail-recursive and
more efficient. */
let rev_map: ('a => 'b, list<'a>) => list<'b>
/** [List.fold_left f a [b1; ...; bn]] is
[f (... (f (f a b1) b2) ...) bn]. */
let fold_left: (('a, 'b) => 'a, 'a, list<'b>) => 'a
/** [List.fold_right f [a1; ...; an] b] is
[f a1 (f a2 (... (f an b) ...))]. Not tail-recursive. */
let fold_right: (('a, 'b) => 'b, list<'a>, 'b) => 'b
/* {1 Iterators on two lists} */
/** [List.iter2 f [a1; ...; an] [b1; ...; bn]] calls in turn
[f a1 b1; ...; f an bn].
Raise [Invalid_argument] if the two lists are determined
to have different lengths. */
let iter2: (('a, 'b) => unit, list<'a>, list<'b>) => unit
/** [List.map2 f [a1; ...; an] [b1; ...; bn]] is
[[f a1 b1; ...; f an bn]].
Raise [Invalid_argument] if the two lists are determined
to have different lengths. Not tail-recursive. */
let map2: (('a, 'b) => 'c, list<'a>, list<'b>) => list<'c>
/** [List.rev_map2 f l1 l2] gives the same result as
{!List.rev}[ (]{!List.map2}[ f l1 l2)], but is tail-recursive and
more efficient. */
let rev_map2: (('a, 'b) => 'c, list<'a>, list<'b>) => list<'c>
/** [List.fold_left2 f a [b1; ...; bn] [c1; ...; cn]] is
[f (... (f (f a b1 c1) b2 c2) ...) bn cn].
Raise [Invalid_argument] if the two lists are determined
to have different lengths. */
let fold_left2: (('a, 'b, 'c) => 'a, 'a, list<'b>, list<'c>) => 'a
/** [List.fold_right2 f [a1; ...; an] [b1; ...; bn] c] is
[f a1 b1 (f a2 b2 (... (f an bn c) ...))].
Raise [Invalid_argument] if the two lists are determined
to have different lengths. Not tail-recursive. */
let fold_right2: (('a, 'b, 'c) => 'c, list<'a>, list<'b>, 'c) => 'c
/* {1 List scanning} */
/** [for_all p [a1; ...; an]] checks if all elements of the list
satisfy the predicate [p]. That is, it returns
[(p a1) && (p a2) && ... && (p an)]. */
let for_all: ('a => bool, list<'a>) => bool
/** [exists p [a1; ...; an]] checks if at least one element of
the list satisfies the predicate [p]. That is, it returns
[(p a1) || (p a2) || ... || (p an)]. */
let exists: ('a => bool, list<'a>) => bool
/** Same as {!List.for_all}, but for a two-argument predicate.
Raise [Invalid_argument] if the two lists are determined
to have different lengths. */
let for_all2: (('a, 'b) => bool, list<'a>, list<'b>) => bool
/** Same as {!List.exists}, but for a two-argument predicate.
Raise [Invalid_argument] if the two lists are determined
to have different lengths. */
let exists2: (('a, 'b) => bool, list<'a>, list<'b>) => bool
/** [mem a l] is true if and only if [a] is equal
to an element of [l]. */
let mem: ('a, list<'a>) => bool
/** Same as {!List.mem}, but uses physical equality instead of structural
equality to compare list elements. */
let memq: ('a, list<'a>) => bool
/* {1 List searching} */
/** [find p l] returns the first element of the list [l]
that satisfies the predicate [p].
Raise [Not_found] if there is no value that satisfies [p] in the
list [l]. */
let find: ('a => bool, list<'a>) => 'a
/** [find_opt p l] returns the first element of the list [l] that
satisfies the predicate [p], or [None] if there is no value that
satisfies [p] in the list [l].
@since 4.05 */
let find_opt: ('a => bool, list<'a>) => option<'a>
/** [filter p l] returns all the elements of the list [l]
that satisfy the predicate [p]. The order of the elements
in the input list is preserved. */
let filter: ('a => bool, list<'a>) => list<'a>
/** [find_all] is another name for {!List.filter}. */
let find_all: ('a => bool, list<'a>) => list<'a>
/** [partition p l] returns a pair of lists [(l1, l2)], where
[l1] is the list of all the elements of [l] that
satisfy the predicate [p], and [l2] is the list of all the
elements of [l] that do not satisfy [p].
The order of the elements in the input list is preserved. */
let partition: ('a => bool, list<'a>) => (list<'a>, list<'a>)
/* {1 Association lists} */
/** [assoc a l] returns the value associated with key [a] in the list of
pairs [l]. That is,
[assoc a [ ...; (a,b); ...] = b]
if [(a,b)] is the leftmost binding of [a] in list [l].
Raise [Not_found] if there is no value associated with [a] in the
list [l]. */
let assoc: ('a, list<('a, 'b)>) => 'b
/** [assoc_opt a l] returns the value associated with key [a] in the list of
pairs [l]. That is,
[assoc_opt a [ ...; (a,b); ...] = b]
if [(a,b)] is the leftmost binding of [a] in list [l].
Returns [None] if there is no value associated with [a] in the
list [l].
@since 4.05 */
let assoc_opt: ('a, list<('a, 'b)>) => option<'b>
/** Same as {!List.assoc}, but uses physical equality instead of structural
equality to compare keys. */
let assq: ('a, list<('a, 'b)>) => 'b
/** Same as {!List.assoc_opt}, but uses physical equality instead of structural
equality to compare keys.
@since 4.05 */
let assq_opt: ('a, list<('a, 'b)>) => option<'b>
/** Same as {!List.assoc}, but simply return true if a binding exists,
and false if no bindings exist for the given key. */
let mem_assoc: ('a, list<('a, 'b)>) => bool
/** Same as {!List.mem_assoc}, but uses physical equality instead of
structural equality to compare keys. */
let mem_assq: ('a, list<('a, 'b)>) => bool
/** [remove_assoc a l] returns the list of
pairs [l] without the first pair with key [a], if any.
Not tail-recursive. */
let remove_assoc: ('a, list<('a, 'b)>) => list<('a, 'b)>
/** Same as {!List.remove_assoc}, but uses physical equality instead
of structural equality to compare keys. Not tail-recursive. */
let remove_assq: ('a, list<('a, 'b)>) => list<('a, 'b)>
/* {1 Lists of pairs} */
/** Transform a list of pairs into a pair of lists:
[split [(a1,b1); ...; (an,bn)]] is [([a1; ...; an], [b1; ...; bn])].
Not tail-recursive.
*/
let split: list<('a, 'b)> => (list<'a>, list<'b>)
/** Transform a pair of lists into a list of pairs:
[combine [a1; ...; an] [b1; ...; bn]] is
[[(a1,b1); ...; (an,bn)]].
Raise [Invalid_argument] if the two lists
have different lengths. Not tail-recursive. */
let combine: (list<'a>, list<'b>) => list<('a, 'b)>
/* {1 Sorting} */
/** Sort a list in increasing order according to a comparison
function. The comparison function must return 0 if its arguments
compare as equal, a positive integer if the first is greater,
and a negative integer if the first is smaller (see Array.sort for
a complete specification). For example,
{!Pervasives.compare} is a suitable comparison function.
The resulting list is sorted in increasing order.
[List.sort] is guaranteed to run in constant heap space
(in addition to the size of the result list) and logarithmic
stack space.
The current implementation uses Merge Sort. It runs in constant
heap space and logarithmic stack space.
*/
let sort: (('a, 'a) => int, list<'a>) => list<'a>
/** Same as {!List.sort}, but the sorting algorithm is guaranteed to
be stable (i.e. elements that compare equal are kept in their
original order) .
The current implementation uses Merge Sort. It runs in constant
heap space and logarithmic stack space.
*/
let stable_sort: (('a, 'a) => int, list<'a>) => list<'a>
/** Same as {!List.sort} or {!List.stable_sort}, whichever is faster
on typical input. */
let fast_sort: (('a, 'a) => int, list<'a>) => list<'a>
/** Same as {!List.sort}, but also remove duplicates.
@since 4.02.0 */
let sort_uniq: (('a, 'a) => int, list<'a>) => list<'a>
/** Merge two lists:
Assuming that [l1] and [l2] are sorted according to the
comparison function [cmp], [merge cmp l1 l2] will return a
sorted list containing all the elements of [l1] and [l2].
If several elements compare equal, the elements of [l1] will be
before the elements of [l2].
Not tail-recursive (sum of the lengths of the arguments).
*/
let merge: (('a, 'a) => int, list<'a>, list<'a>) => list<'a>