-
Notifications
You must be signed in to change notification settings - Fork 460
/
Copy pathint64.resi
189 lines (147 loc) · 7.03 KB
/
int64.resi
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
/* ************************************************************************ */
/* */
/* OCaml */
/* */
/* Xavier Leroy, projet Cristal, INRIA Rocquencourt */
/* */
/* Copyright 1996 Institut National de Recherche en Informatique et */
/* en Automatique. */
/* */
/* All rights reserved. This file is distributed under the terms of */
/* the GNU Lesser General Public License version 2.1, with the */
/* special exception on linking described in the file LICENSE. */
/* */
/* ************************************************************************ */
/*** 64-bit integers.
This module provides operations on the type [int64] of
signed 64-bit integers. Unlike the built-in [int] type,
the type [int64] is guaranteed to be exactly 64-bit wide on all
platforms. All arithmetic operations over [int64] are taken
modulo 2{^64}
Performance notice: values of type [int64] occupy more memory
space than values of type [int], and arithmetic operations on
[int64] are generally slower than those on [int]. Use [int64]
only when the application requires exact 64-bit arithmetic.
*/
/** The 64-bit integer 0. */
let zero: int64
/** The 64-bit integer 1. */
let one: int64
/** The 64-bit integer -1. */
let minus_one: int64
/** Unary negation. */
external neg: int64 => int64 = "%int64_neg"
/** Addition. */
external add: (int64, int64) => int64 = "%int64_add"
/** Subtraction. */
external sub: (int64, int64) => int64 = "%int64_sub"
/** Multiplication. */
external mul: (int64, int64) => int64 = "%int64_mul"
/** Integer division. Raise [Division_by_zero] if the second
argument is zero. This division rounds the real quotient of
its arguments towards zero, as specified for {!Pervasives.(/)}. */
external div: (int64, int64) => int64 = "%int64_div"
/** Integer remainder. If [y] is not zero, the result
of [Int64.rem x y] satisfies the following property:
[x = Int64.add (Int64.mul (Int64.div x y) y) (Int64.rem x y)].
If [y = 0], [Int64.rem x y] raises [Division_by_zero]. */
external rem: (int64, int64) => int64 = "%int64_mod"
/** Successor. [Int64.succ x] is [Int64.add x Int64.one]. */
let succ: int64 => int64
/** Predecessor. [Int64.pred x] is [Int64.sub x Int64.one]. */
let pred: int64 => int64
/** Return the absolute value of its argument. */
let abs: int64 => int64
/** The greatest representable 64-bit integer, 2{^63} - 1. */
let max_int: int64
/** The smallest representable 64-bit integer, -2{^63}. */
let min_int: int64
/** Bitwise logical and. */
external logand: (int64, int64) => int64 = "%int64_and"
/** Bitwise logical or. */
external logor: (int64, int64) => int64 = "%int64_or"
/** Bitwise logical exclusive or. */
external logxor: (int64, int64) => int64 = "%int64_xor"
/** Bitwise logical negation. */
let lognot: int64 => int64
/** [Int64.shift_left x y] shifts [x] to the left by [y] bits.
The result is unspecified if [y < 0] or [y >= 64]. */
external shift_left: (int64, int) => int64 = "%int64_lsl"
/** [Int64.shift_right x y] shifts [x] to the right by [y] bits.
This is an arithmetic shift: the sign bit of [x] is replicated
and inserted in the vacated bits.
The result is unspecified if [y < 0] or [y >= 64]. */
external shift_right: (int64, int) => int64 = "%int64_asr"
/** [Int64.shift_right_logical x y] shifts [x] to the right by [y] bits.
This is a logical shift: zeroes are inserted in the vacated bits
regardless of the sign of [x].
The result is unspecified if [y < 0] or [y >= 64]. */
external shift_right_logical: (int64, int) => int64 = "%int64_lsr"
/** Convert the given integer (type [int]) to a 64-bit integer
(type [int64]). */
external of_int: int => int64 = "%int64_of_int"
/** Convert the given 64-bit integer (type [int64]) to an
integer (type [int]). On 64-bit platforms, the 64-bit integer
is taken modulo 2{^63}, i.e. the high-order bit is lost
during the conversion. On 32-bit platforms, the 64-bit integer
is taken modulo 2{^31}, i.e. the top 33 bits are lost
during the conversion. */
external to_int: int64 => int = "%int64_to_int"
/** Convert the given floating-point number to a 64-bit integer,
discarding the fractional part (truncate towards 0).
The result of the conversion is undefined if, after truncation,
the number is outside the range \[{!Int64.min_int}, {!Int64.max_int}\]. */
external of_float: float => int64 = "?int64_of_float"
/** Convert the given 64-bit integer to a floating-point number. */
external to_float: int64 => float = "?int64_to_float"
/** Convert the given 32-bit integer (type [int])
to a 64-bit integer (type [int64]). */
external of_int32: int => int64 = "%int64_of_int32"
/** Convert the given 64-bit integer (type [int64]) to a
32-bit integer (type [int]). The 64-bit integer
is taken modulo 2{^32}, i.e. the top 32 bits are lost
during the conversion. */
external to_int32: int64 => int = "%int64_to_int32"
/** Convert the given string to a 64-bit integer.
The string is read in decimal (by default, or if the string
begins with [0u]) or in hexadecimal, octal or binary if the
string begins with [0x], [0o] or [0b] respectively.
The [0u] prefix reads the input as an unsigned integer in the range
[[0, 2*Int64.max_int+1]]. If the input exceeds {!Int64.max_int}
it is converted to the signed integer
[Int64.min_int + input - Int64.max_int - 1].
The [_] (underscore) character can appear anywhere in the string
and is ignored.
Raise [Failure "Int64.of_string"] if the given string is not
a valid representation of an integer, or if the integer represented
exceeds the range of integers representable in type [int64]. */
external of_string: string => int64 = "?int64_of_string"
/** Same as [of_string], but return [None] instead of raising.
@since 4.05 */
let of_string_opt: string => option<int64>
/** Return the string representation of its argument, in decimal. */
let to_string: int64 => string
/** Return the internal representation of the given float according
to the IEEE 754 floating-point 'double format' bit layout.
Bit 63 of the result represents the sign of the float;
bits 62 to 52 represent the (biased) exponent; bits 51 to 0
represent the mantissa. */
external bits_of_float: float => int64 = "?int64_bits_of_float"
/** Return the floating-point number whose internal representation,
according to the IEEE 754 floating-point 'double format' bit layout,
is the given [int64]. */
external float_of_bits: int64 => float = "?int64_float_of_bits"
/** An alias for the type of 64-bit integers. */
type t = int64
/** The comparison function for 64-bit integers, with the same specification as
{!Pervasives.compare}. Along with the type [t], this function [compare]
allows the module [Int64] to be passed as argument to the functors
{!Set.Make} and {!Map.Make}. */
let compare: (t, t) => int
/** The equal function for int64s.
@since 4.03.0 */
let equal: (t, t) => bool
/* {1 Deprecated functions} */
/** Do not use this deprecated function. Instead,
used {!Printf.sprintf} with a [%L...] format. */
external format: (string, int64) => string = "?int64_format"