forked from mariosky/EvoloPy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGWO.py
141 lines (89 loc) · 4.09 KB
/
GWO.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# -*- coding: utf-8 -*-
"""
Created on Mon May 16 00:27:50 2016
@author: Hossam Faris
"""
import random
import numpy
import math
from solution import solution
import time
def GWO(objf,lb,ub,dim,SearchAgents_no,Max_iter, Positions = None, fopt=float("-inf") , **kwargs ):
#Max_iter=1000
#lb=-100
#ub=100
#dim=30
#SearchAgents_no=5
# initialize alpha, beta, and delta_pos
Alpha_pos=numpy.zeros(dim)
Alpha_score=float("inf")
Beta_pos=numpy.zeros(dim)
Beta_score=float("inf")
Delta_pos=numpy.zeros(dim)
Delta_score=float("inf")
#Initialize the positions of search agents
#if not Positions is None:
# Positions=numpy.random.uniform(0,1,(SearchAgents_no,dim)) *(ub-lb)+lb
Convergence_curve=[]
s=solution()
# Loop counter
print("GWO is optimizing \""+objf.__name__+"\"")
timerStart=time.time()
s.startTime=time.strftime("%Y-%m-%d-%H-%M-%S")
# Main loop
for l in range(0,Max_iter):
for i in range(0,SearchAgents_no):
# Return back the search agents that go beyond the boundaries of the search space
Positions[i,:]=numpy.clip(Positions[i,:], lb, ub)
# Calculate objective function for each search agent
#score = objf(Positions[i,:])
fitness = objf(Positions[i, :])
#score = abs(fitness - fopt)
#print fitness, Positions[i, :]
#print score, fitness
# Update Alpha, Beta, and Delta
if fitness<Alpha_score :
Alpha_score=fitness; # Update alpha
Alpha_pos=Positions[i,:]
if (fitness>Alpha_score and fitness<Beta_score ):
Beta_score=fitness # Update beta
Beta_pos=Positions[i,:]
if (fitness>Alpha_score and fitness>Beta_score and fitness<Delta_score):
Delta_score=fitness # Update delta
Delta_pos=Positions[i,:]
a=2-l*((2)/Max_iter); # a decreases linearly fron 2 to 0
# Update the Position of search agents including omegas
for i in range(0,SearchAgents_no):
for j in range (0,dim):
r1=random.random() # r1 is a random number in [0,1]
r2=random.random() # r2 is a random number in [0,1]
A1=2*a*r1-a; # Equation (3.3)
C1=2*r2; # Equation (3.4)
D_alpha=abs(C1*Alpha_pos[j]-Positions[i,j]); # Equation (3.5)-part 1
X1=Alpha_pos[j]-A1*D_alpha; # Equation (3.6)-part 1
r1=random.random()
r2=random.random()
A2=2*a*r1-a; # Equation (3.3)
C2=2*r2; # Equation (3.4)
D_beta=abs(C2*Beta_pos[j]-Positions[i,j]); # Equation (3.5)-part 2
X2=Beta_pos[j]-A2*D_beta; # Equation (3.6)-part 2
r1=random.random()
r2=random.random()
A3=2*a*r1-a; # Equation (3.3)
C3=2*r2; # Equation (3.4)
D_delta=abs(C3*Delta_pos[j]-Positions[i,j]); # Equation (3.5)-part 3
X3=Delta_pos[j]-A3*D_delta; # Equation (3.5)-part 3
Positions[i,j]=(X1+X2+X3)/3 # Equation (3.7)
Convergence_curve.append((l, Alpha_score, list(Alpha_pos) ) );
if (l%1==0) and 'verbose' in kwargs:
print(['At iteration '+ str(l)+ ' the best fitness is '+ str(Alpha_score)]);
timerEnd=time.time()
s.best = Alpha_score
s.bestIndividual = list(Alpha_pos)
s.endTime=time.strftime("%Y-%m-%d-%H-%M-%S")
s.executionTime=timerEnd-timerStart
s.convergence=Convergence_curve
s.optimizer="GWO"
s.objfname=objf.__name__
s.pop = list(Positions)
return s