-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpresent.tex
254 lines (210 loc) · 8.05 KB
/
present.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
\documentclass{beamer}
%\documentclass[handout]{beamer}
\mode<presentation>
{
%\usetheme{Warsaw}
\usetheme{Frankfurt}
%\usetheme[subsection=false]{Dresden}
\useoutertheme[subsection=false]{miniframes}
\usecolortheme{beaver}
\useinnertheme{circles}
\setbeamercovered{highly dynamic}
\setbeamertemplate{navigation symbols}{}
}
\usepackage[english]{babel}
\usepackage[utf8]{inputenc}
\usepackage{color}
\usepackage{lmodern}
\usepackage[T1]{fontenc}
\title
{Mutualism in the face of parasitism: a population dynamics approach}
\author[]
{Renato Mendes Coutinho\inst{1} \and Yazmín Zurita-Guti\'errez
\inst{2} \\ \and Edgar Zanella Alvarenga\inst{3}}
\institute[IFT]
{
\inst{1}
Institute for Theoretical Physics\\
S\~ao Paulo State University\\
\texttt{renato.coutinho@gmail.com}
\and
\inst{2}
Centre d'Ecologie Fonctienelle et Evolutive \\
Montpellier - France \\
\texttt{ravenzurapiti@ciencias.unam.mx}
\and
\inst{3}
Bioinformatics Program at IME - University of S\~ao Paulo \\
\texttt{e@vaz.io}
}
\date[DS Bio 2014] % (optional, should be abbreviation of conference name)
{
\vspace{0.2cm} Minischool on Dynamical Systems in Biology}
% If you wish to uncover everything in a step-wise fashion, uncomment
% the following command:
%\beamerdefaultoverlayspecification{<+->}
\begin{document}
\begin{frame}
\titlepage
\end{frame}
\begin{frame}{Outline}{}
\tableofcontents[pausesections]
\end{frame}
\section{Mutualism: service relationships}
\begin{frame}{Mutualism: service-resource relationships}
\begin{columns}
\column{.3\textwidth}
\includegraphics[width=.7\textheight]{birdeatgiraffe.jpg} \\
\column[t]{.5\textwidth}
\includegraphics[width=.9\textwidth]{limpiando.jpg}
\vfill
\end{columns}
\end{frame}
\begin{frame}{A few examples}
\begin{columns}
\column{.6\textwidth}
\includegraphics[width=1\textwidth]{fishcoral.jpg} \\
\column[t]{.5\textwidth}
\includegraphics[width=1\textwidth]{turtle.jpg}
\end{columns}
\end{frame}
\begin{frame}{Mutualism \emph{vs.} Parasitism}
\includegraphics[width=1\textwidth]{marryme.jpg} \\
\end{frame}
\begin{frame}{Mutualism \emph{vs.} parasitism}
\begin{block}{
How can mutualism be maintained if parasitism seems to be advantageous?}
\begin{itemize}
\item We investigated this question developing a model for the population
dynamics of a cleaner-client relationship.
\item We chose a few specific assumptions, but the idea was to assess
general qualitative ideas of why and how this kind of system keeps its
mutualistic character.
\end{itemize}
\end{block}
\end{frame}
\section{Model formulation}
\begin{frame}{Model formulation and assumptions}
We formulate a model for the growth, in continuous time, of the
populations of clients ($H$ for hosts), cleaners ($M$ for mutualists) and
their food ($D$ for detritus).
\pause
\begin{itemize}
\item Hosts population grow logistically;
\pause
\item detritus reduce the growth of hosts.
\pause
\item Cleaners feed on detritus.
\pause
\item Hosts can avoid mutualists, either by avoiding them or scraping
them off.
\pause
\item The amount of detritus increases with the abundance of hosts.
\pause
\item Cleaners may also be harmful to the hosts, for instance by
feeding on them.
\end{itemize}
\end{frame}
\begin{frame}{The model}
\begin{align*}
\frac{dH}{dt} &= \overbrace{H \rho(H)}^{\text{host growth}} \pause
- \overbrace{\alpha DH}^\text{effect of detritus} \pause
- \overbrace{\frac{(1-q)H}{1+qahD + (1-q)a h_P H}
aM}^\text{parasitism} \\[3ex]
\pause
\frac{dM}{dt} &= \frac{\overbrace{qD}^\text{feeding on detritus} \pause +
\overbrace{(1-q)H}^\text{feeding on the host}}{1+qahD + (1-q)a h_P H} aM \pause
\\ & \qquad {}
- \overbrace{\mu M}^\text{natural mortality}\pause
+ \overbrace{\frac{\beta M}{D}}^\text{avoidance by the host}\\[2ex]
\pause
\frac{dD}{dt} &= \underbrace{i_D H}_\text{detritus accumulation} \pause -
\underbrace{sD}_\text{detritus degradation} \pause - \underbrace{\frac{aqDM}{1+qahD + (1-q)a h_P H}}_\text{feeding on detritus}
\end{align*}
\end{frame}
\section{Questions and sort of answers}
\begin{frame}{Questions to the model}
The model includes two key parameters, related to the species' behavior:
\pause
\begin{itemize}
\item $q$ is the preference of cleaner for feeding on detritus
instead of hosts, so "benign" cleaners have $q=1$. \pause
\item $\beta$ represents the avoidance of cleaners by hosts \pause
\end{itemize}
These two behavioral aspects could evolve in response to each other.
\end{frame}
\begin{frame}{Questions to the model}
Our model allows us to pose some interesting questions:
\pause
\begin{itemize}
\item Under which conditions there is coexistence of hosts and
mutualists?
\pause
\item Is there an optimal preference $q$ for mutualists?
\pause
\item Is there an optimal cleaning effort $\beta$ for hosts?
\pause
\item Is there an evolutionary stable strategy (ESS) when both $q$ and $\beta$ are allowed to change?
\end{itemize}
\end{frame}
\begin{frame}{How to address the questions}
\begin{align*}
\frac{dH}{dt} &= H (\rho(H) - \alpha D) - \frac{(1-q)H}{1+qahD + (1-q)a h_P H} aM
\\&\qquad \textcolor{purple}{- \frac{(1-q')H}{1+q'ahD + (1-q')a h_P H} aM'} \\[2ex]
\frac{dM}{dt} &= \frac{qD + (1-q)H}{1+qahD + (1-q)a h_P H} aM - \left(\mu + \frac{\beta}{D}\right) M \\[2ex]
\frac{dD}{dt} &= i_D H- sD - \frac{qD}{1+qahD + (1-q)a h_P H} aM
\\&\qquad \textcolor{purple}{- \frac{q'D}{1+q'ahD + (1-q')a h_P H} aM'} \\[2ex]
\textcolor{purple}{\frac{dM'}{dt} }&\textcolor{purple}{= \frac{q'D + (1-q')H}{1+q'ahD + (1-q')a h_P H} aM' - \left(\mu + \frac{\beta}{D}\right) M'}
\end{align*}
\end{frame}
\begin{frame}{How to address the questions}
At the equilibrium $$\frac{dH}{dt} = \frac{dM}{dt} = \frac{dD}{dt} = 0$$
We analysed if the mutant $M'$ is able to invade this equilibrium, by
verifying if $$\frac{dM'}{dt} > 0$$ with a initial $M'$ close to zero, and $q' \neq q$
(all other parameters are the same).
\end{frame}
\begin{frame}{A few answers}
\begin{block}{Under which conditions there is coexistence of hosts and
``benign'' mutualists?}
Analysing the coexistence fixed point, some conditions have to be
satisfied to ensure that it exists (ie. it is positive):
$$\begin{aligned}
\mu &< \frac{1}{h} &&\Rightarrow \text{mortality smaller than maximum
feeding rate}\\
\frac{\alpha}{r} &< 1 -s &&\Rightarrow \text{not everything is easy to
interpret!}\\
r &> \frac{\alpha i_D}{s} &&\Rightarrow \text{host growth rate greater than
detritus effect}
\end{aligned}$$
\end{block}
\end{frame}
\begin{frame}{Model outcomes: equilibrium (without mutant)}
\includegraphics[width=1\textwidth]{equ.png}
\end{frame}
\begin{frame}{Model outcomes: mutant does not invade}
\includegraphics[width=1\textwidth]{dieout.png}
\end{frame}
\begin{frame}{Model outcomes: mutant replaces resident}
\includegraphics[width=1\textwidth]{replace.png}
\end{frame}
\begin{frame}{Model outcomes: coexistence!}
\includegraphics[width=1\textwidth]{coexist.png}
\end{frame}
\begin{frame}{Further work}
\begin{itemize}
\item A more thorough analysis of the model is needed to settle the questions
posed.
\item A simple invasibility analysis may not suffice
when there is coexistence between distinct cleaner types.
\item Beyond the initial questions, it would be of interest to assess how the effect of detritus on hosts
(parameterized by $\alpha$) and environmental conditions (such as host
growth rate $r$, or detritus decay rate $s$) affect the ESS (if it exists).
\end{itemize}
\end{frame}
\begin{frame}{}
\includegraphics[width=.6\textwidth]{crocodile.jpg} \\[4ex]
\begin{flushright}
Thanks for your attention!
\end{flushright}
\end{frame}
\end{document}