-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompact.cu
450 lines (396 loc) · 17.1 KB
/
compact.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
#include <math.h>
#include <stdio.h>
#include <omp.h>
char *cp_to_device(char *from, size_t size) {
char *tmp;
cudaMalloc((void**)&tmp, size);
cudaMemcpy(tmp, from, size, cudaMemcpyHostToDevice);
return tmp;
}
void cp_to_host(char *to, char*from, size_t size) {
cudaMemcpy(to, from, size, cudaMemcpyDeviceToHost);
cudaFree(from);
}
__global__ void ccc_loop1(const int * __restrict imaterial, const int * __restrict nextfrac, const double * __restrict rho_compact, const double * __restrict rho_compact_list,
const double * __restrict Vf_compact_list, const double * __restrict V, double * __restrict rho_ave_compact, int sizex, int sizey, int * __restrict mmc_index) {
int i = threadIdx.x + blockIdx.x * blockDim.x;
int j = threadIdx.y + blockIdx.y * blockDim.y;
if (i >= sizex || j >= sizey) return;
#ifdef FUSED
double ave = 0.0;
int ix = imaterial[i+sizex*j];
if (ix <= 0) {
// condition is 'ix >= 0', this is the equivalent of
// 'until ix < 0' from the paper
#ifdef LINKED
for (ix = -ix; ix >= 0; ix = nextfrac[ix]) {
ave += rho_compact_list[ix] * Vf_compact_list[ix];
}
#else
for (int idx = mmc_index[-ix]; idx < mmc_index[-ix+1]; idx++) {
ave += rho_compact_list[idx] * Vf_compact_list[idx];
}
#endif
rho_ave_compact[i+sizex*j] = ave/V[i+sizex*j];
}
else {
#endif
// We use a distinct output array for averages.
// In case of a pure cell, the average density equals to the total.
rho_ave_compact[i+sizex*j] = rho_compact[i+sizex*j] / V[i+sizex*j];
#ifdef FUSED
}
#endif
}
__global__ void ccc_loop1_2(const double * __restrict rho_compact_list, const double * __restrict Vf_compact_list, const double * __restrict V, double * __restrict rho_ave_compact, const int * __restrict mmc_index, const int mmc_cells, const int * __restrict mmc_i, const int * __restrict mmc_j, int sizex, int sizey) {
int c = threadIdx.x + blockIdx.x * blockDim.x;
if (c >= mmc_cells) return;
double ave = 0.0;
for (int m = mmc_index[c]; m < mmc_index[c+1]; m++) {
ave += rho_compact_list[m] * Vf_compact_list[m];
}
rho_ave_compact[mmc_i[c]+sizex*mmc_j[c]] = ave/V[mmc_i[c]+sizex*mmc_j[c]];
}
__global__ void ccc_loop2(const int * __restrict imaterial, const int * __restrict matids, const int * __restrict nextfrac, const double * __restrict rho_compact, const double * __restrict rho_compact_list,
const double * __restrict t_compact, const double * __restrict t_compact_list,
const double * __restrict Vf_compact_list, const double * __restrict n, double * __restrict p_compact, double * __restrict p_compact_list, int sizex, int sizey, int * __restrict mmc_index) {
int i = threadIdx.x + blockIdx.x * blockDim.x;
int j = threadIdx.y + blockIdx.y * blockDim.y;
if (i >= sizex || j >= sizey) return;
int ix = imaterial[i+sizex*j];
if (ix <= 0) {
#ifdef FUSED
// NOTE: I think the paper describes this algorithm (Alg. 9) wrong.
// The solution below is what I believe to good.
// condition is 'ix >= 0', this is the equivalent of
// 'until ix < 0' from the paper
#ifdef LINKED
for (ix = -ix; ix >= 0; ix = nextfrac[ix]) {
double nm = n[matids[ix]];
p_compact_list[ix] = (nm * rho_compact_list[ix] * t_compact_list[ix]) / Vf_compact_list[ix];
}
#else
for (int idx = mmc_index[-ix]; idx < mmc_index[-ix+1]; idx++) {
double nm = n[matids[idx]];
p_compact_list[idx] = (nm * rho_compact_list[idx] * t_compact_list[idx]) / Vf_compact_list[idx];
}
#endif
#endif
}
else {
// NOTE: HACK: we index materials from zero, but zero can be a list index
int mat = ix - 1;
// NOTE: There is no division by Vf here, because the fractional volume is 1.0 in the pure cell case.
p_compact[i+sizex*j] = n[mat] * rho_compact[i+sizex*j] * t_compact[i+sizex*j];;
}
}
__global__ void ccc_loop2_2(const int * __restrict matids, const double * __restrict rho_compact_list,
const double * __restrict t_compact_list, const double * __restrict Vf_compact_list, const double * __restrict n, double * __restrict p_compact_list, int * __restrict mmc_index, int mmc_cells) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx >= mmc_cells) return;
double nm = n[matids[idx]];
p_compact_list[idx] = (nm * rho_compact_list[idx] * t_compact_list[idx]) / Vf_compact_list[idx];
}
__global__ void ccc_loop3(const int * __restrict imaterial, const int * __restrict nextfrac, const int * __restrict matids,
const double * __restrict rho_compact,
const double * __restrict rho_compact_list,
double * __restrict rho_mat_ave_compact,
double * __restrict rho_mat_ave_compact_list,
const double * __restrict x, const double * __restrict y,
int sizex, int sizey, int * __restrict mmc_index) {
int i = threadIdx.x + blockIdx.x * blockDim.x;
int j = threadIdx.y + blockIdx.y * blockDim.y;
if (i >= sizex-1 || j >= sizey-1 || i < 1 || j < 1) return;
// o: outer
double xo = x[i+sizex*j];
double yo = y[i+sizex*j];
// There are at most 9 neighbours in 2D case.
double dsqr[9];
// for all neighbours
for (int nj = -1; nj <= 1; nj++) {
for (int ni = -1; ni <= 1; ni++) {
dsqr[(nj+1)*3 + (ni+1)] = 0.0;
// i: inner
double xi = x[(i+ni)+sizex*(j+nj)];
double yi = y[(i+ni)+sizex*(j+nj)];
dsqr[(nj+1)*3 + (ni+1)] += (xo - xi) * (xo - xi);
dsqr[(nj+1)*3 + (ni+1)] += (yo - yi) * (yo - yi);
}
}
int ix = imaterial[i+sizex*j];
if (ix <= 0) {
// condition is 'ix >= 0', this is the equivalent of
// 'until ix < 0' from the paper
#ifdef LINKED
for (ix = -ix; ix >= 0; ix = nextfrac[ix]) {
#else
for (int ix = mmc_index[-imaterial[i+sizex*j]]; ix < mmc_index[-imaterial[i+sizex*j]+1]; ix++) {
#endif
int mat = matids[ix];
double rho_sum = 0.0;
int Nn = 0;
// for all neighbours
for (int nj = -1; nj <= 1; nj++) {
for (int ni = -1; ni <= 1; ni++) {
int ci = i+ni, cj = j+nj;
int jx = imaterial[ci+sizex*cj];
if (jx <= 0) {
// condition is 'jx >= 0', this is the equivalent of
// 'until jx < 0' from the paper
#ifdef LINKED
for (jx = -jx; jx >= 0; jx = nextfrac[jx]) {
#else
for (int jx = mmc_index[-imaterial[ci+sizex*cj]]; jx < mmc_index[-imaterial[ci+sizex*cj]+1]; jx++) {
#endif
if (matids[jx] == mat) {
rho_sum += rho_compact_list[jx] / dsqr[(nj+1)*3 + (ni+1)];
Nn += 1;
// The loop has an extra condition: "and not found".
// This makes sense, if the material is found, there won't be any more of the same.
break;
}
}
}
else {
// NOTE: In this case, the neighbour is a pure cell, its material index is in jx.
// In contrast, Algorithm 10 loads matids[jx] which I think is wrong.
// NOTE: HACK: we index materials from zero, but zero can be a list index
int mat_neighbour = jx - 1;
if (mat == mat_neighbour) {
rho_sum += rho_compact[ci+sizex*cj] / dsqr[(nj+1)*3 + (ni+1)];
Nn += 1;
}
} // end if (jx <= 0)
} // end for (int ni)
} // end for (int nj)
rho_mat_ave_compact_list[ix] = rho_sum / Nn;
} // end for (ix = -ix)
} // end if (ix <= 0)
else {
// NOTE: In this case, the cell is a pure cell, its material index is in ix.
// In contrast, Algorithm 10 loads matids[ix] which I think is wrong.
// NOTE: HACK: we index materials from zero, but zero can be a list index
int mat = ix - 1;
double rho_sum = 0.0;
int Nn = 0;
// for all neighbours
for (int nj = -1; nj <= 1; nj++) {
if ((j + nj < 0) || (j + nj >= sizey)) // TODO: better way?
continue;
for (int ni = -1; ni <= 1; ni++) {
if ((i + ni < 0) || (i + ni >= sizex)) // TODO: better way?
continue;
int ci = i+ni, cj = j+nj;
int jx = imaterial[ci+sizex*cj];
if (jx <= 0) {
// condition is 'jx >= 0', this is the equivalent of
// 'until jx < 0' from the paper
#ifdef LINKED
for (jx = -jx; jx >= 0; jx = nextfrac[jx]) {
#else
for (int jx = mmc_index[-imaterial[ci+sizex*cj]]; jx < mmc_index[-imaterial[ci+sizex*cj]+1]; jx++) {
#endif
if (matids[jx] == mat) {
rho_sum += rho_compact_list[jx] / dsqr[(nj+1)*3 + (ni+1)];
Nn += 1;
// The loop has an extra condition: "and not found".
// This makes sense, if the material is found, there won't be any more of the same.
break;
}
}
}
else {
// NOTE: In this case, the neighbour is a pure cell, its material index is in jx.
// In contrast, Algorithm 10 loads matids[jx] which I think is wrong.
// NOTE: HACK: we index materials from zero, but zero can be a list index
int mat_neighbour = jx - 1;
if (mat == mat_neighbour) {
rho_sum += rho_compact[ci+sizex*cj] / dsqr[(nj+1)*3 + (ni+1)];
Nn += 1;
}
} // end if (jx <= 0)
} // end for (int ni)
} // end for (int nj)
rho_mat_ave_compact[i+sizex*j] = rho_sum / Nn;
} // end else
}
struct full_data
{
int sizex;
int sizey;
int Nmats;
double * __restrict__ rho;
double * __restrict__ rho_mat_ave;
double * __restrict__ p;
double * __restrict__ Vf;
double * __restrict__ t;
double * __restrict__ V;
double * __restrict__ x;
double * __restrict__ y;
double * __restrict__ n;
double * __restrict__ rho_ave;
};
struct compact_data
{
int sizex;
int sizey;
int Nmats;
double * __restrict__ rho_compact;
double * __restrict__ rho_compact_list;
double * __restrict__ rho_mat_ave_compact;
double * __restrict__ rho_mat_ave_compact_list;
double * __restrict__ p_compact;
double * __restrict__ p_compact_list;
double * __restrict__ Vf_compact_list;
double * __restrict__ t_compact;
double * __restrict__ t_compact_list;
double * __restrict__ V;
double * __restrict__ x;
double * __restrict__ y;
double * __restrict__ n;
double * __restrict__ rho_ave_compact;
int * __restrict__ imaterial;
int * __restrict__ matids;
int * __restrict__ nextfrac;
int * __restrict__ mmc_index;
int * __restrict__ mmc_i;
int * __restrict__ mmc_j;
int mm_len;
int mmc_cells;
};
void compact_cell_centric(full_data cc, compact_data ccc, double &a1, double &a2, double &a3, int argc, char** argv)
{
int sizex = cc.sizex;
int sizey = cc.sizey;
int Nmats = cc.Nmats;
int mmc_cells = ccc.mmc_cells;
int mm_len = ccc.mm_len;
int *d_imaterial = (int *)cp_to_device((char*)ccc.imaterial, sizex*sizey*sizeof(int));
int *d_matids = (int *)cp_to_device((char*)ccc.matids, mm_len*sizeof(int));
int *d_nextfrac = (int *)cp_to_device((char*)ccc.nextfrac, mm_len*sizeof(int));
int *d_mmc_index = (int *)cp_to_device((char*)ccc.mmc_index, (mmc_cells+1)*sizeof(int));
int *d_mmc_i = (int *)cp_to_device((char*)ccc.mmc_i, (mmc_cells)*sizeof(int));
int *d_mmc_j = (int *)cp_to_device((char*)ccc.mmc_j, (mmc_cells)*sizeof(int));
double *d_x = (double *)cp_to_device((char*)ccc.x, sizex*sizey*sizeof(double));
double *d_y = (double *)cp_to_device((char*)ccc.y, sizex*sizey*sizeof(double));
double *d_rho_compact = (double *)cp_to_device((char*)ccc.rho_compact, sizex*sizey*sizeof(double));
double *d_rho_compact_list = (double *)cp_to_device((char*)ccc.rho_compact_list,mm_len*sizeof(double));
double *d_rho_mat_ave_compact = (double *)cp_to_device((char*)ccc.rho_mat_ave_compact, sizex*sizey*sizeof(double));
double *d_rho_mat_ave_compact_list = (double *)cp_to_device((char*)ccc.rho_mat_ave_compact_list,mm_len*sizeof(double));
double *d_p_compact = (double *)cp_to_device((char*)ccc.p_compact, sizex*sizey*sizeof(double));
double *d_p_compact_list = (double *)cp_to_device((char*)ccc.p_compact_list,mm_len*sizeof(double));
double *d_t_compact = (double *)cp_to_device((char*)ccc.t_compact, sizex*sizey*sizeof(double));
double *d_t_compact_list = (double *)cp_to_device((char*)ccc.t_compact_list,mm_len*sizeof(double));
double *d_Vf_compact_list = (double *)cp_to_device((char*)ccc.Vf_compact_list, mm_len*sizeof(double));
double *d_V = (double *)cp_to_device((char*)ccc.V, sizex*sizey*sizeof(double));
double *d_n = (double *)cp_to_device((char*)ccc.n, Nmats*sizeof(double));
double *d_rho_ave_compact = (double *)cp_to_device((char*)ccc.rho_ave_compact, sizex*sizey*sizeof(double));
int thx = 32;
int thy = 4;
dim3 threads(thx,thy,1);
dim3 blocks((sizex-1)/thx+1, (sizey-1)/thy+1, 1);
// Cell-centric algorithms
// Computational loop 1 - average density in cell
cudaDeviceSynchronize();
double t1 = omp_get_wtime();
ccc_loop1<<<blocks, threads>>>(d_imaterial, d_nextfrac, d_rho_compact, d_rho_compact_list, d_Vf_compact_list, d_V, d_rho_ave_compact, sizex, sizey, d_mmc_index);
#ifndef FUSED
ccc_loop1_2<<<(mmc_cells-1)/(thx*thy)+1, (thx*thy)>>>(d_rho_compact_list, d_Vf_compact_list, d_V, d_rho_ave_compact, d_mmc_index, mmc_cells, d_mmc_i, d_mmc_j, sizex, sizey);
#endif
cudaDeviceSynchronize();
a1 = omp_get_wtime()-t1;
#ifdef DEBUG
printf("Compact matrix, cell centric, alg 1: %g sec\n", a1);
#endif
// Computational loop 2 - Pressure for each cell and each material
t1 = omp_get_wtime();
ccc_loop2<<<blocks, threads>>>(d_imaterial, d_matids,d_nextfrac, d_rho_compact, d_rho_compact_list, d_t_compact, d_t_compact_list, d_Vf_compact_list, d_n, d_p_compact, d_p_compact_list, sizex, sizey, d_mmc_index);
#ifndef FUSED
ccc_loop2_2<<<(mm_len-1)/(thx*thy)+1, (thx*thy)>>>(d_matids, d_rho_compact_list, d_t_compact_list, d_Vf_compact_list, d_n, d_p_compact_list, d_mmc_index, mm_len);
#endif
cudaDeviceSynchronize();
a2 = omp_get_wtime()-t1;
#ifdef DEBUG
printf("Compact matrix, cell centric, alg 2: %g sec\n", a2);
#endif
// Computational loop 3 - Average density of each material over neighborhood of each cell
t1 = omp_get_wtime();
ccc_loop3<<<blocks, threads>>>(d_imaterial,d_nextfrac, d_matids, d_rho_compact, d_rho_compact_list, d_rho_mat_ave_compact, d_rho_mat_ave_compact_list, d_x, d_y, sizex, sizey, d_mmc_index);
cudaDeviceSynchronize();
a3 = omp_get_wtime()-t1;
#ifdef DEBUG
printf("Compact matrix, cell centric, alg 3: %g sec\n", a3);
#endif
cp_to_host((char*)ccc.x, (char*)d_x, sizex*sizey*sizeof(double));
cp_to_host((char*)ccc.y, (char*)d_y, sizex*sizey*sizeof(double));
cp_to_host((char*)ccc.rho_compact, (char*)d_rho_compact, sizex*sizey*sizeof(double));
cp_to_host((char*)ccc.rho_compact_list, (char*)d_rho_compact_list, mm_len*sizeof(double));
cp_to_host((char*)ccc.rho_mat_ave_compact, (char*)d_rho_mat_ave_compact, sizex*sizey*sizeof(double));
cp_to_host((char*)ccc.rho_mat_ave_compact_list, (char*)d_rho_mat_ave_compact_list, mm_len*sizeof(double));
cp_to_host((char*)ccc.p_compact, (char*)d_p_compact, sizex*sizey*sizeof(double));
cp_to_host((char*)ccc.p_compact_list, (char*)d_p_compact_list, mm_len*sizeof(double));
cp_to_host((char*)ccc.t_compact, (char*)d_t_compact, sizex*sizey*sizeof(double));
cp_to_host((char*)ccc.t_compact_list, (char*)d_t_compact_list, mm_len*sizeof(double));
cp_to_host((char*)ccc.Vf_compact_list, (char*)d_Vf_compact_list, mm_len*sizeof(double));
cp_to_host((char*)ccc.V, (char*)d_V, sizex*sizey*sizeof(double));
cp_to_host((char*)ccc.n, (char*)d_n, Nmats*sizeof(double));
cp_to_host((char*)ccc.rho_ave_compact, (char*)d_rho_ave_compact, sizex*sizey*sizeof(double));
}
bool compact_check_results(full_data cc, compact_data ccc)
{
int sizex = cc.sizex;
int sizey = cc.sizey;
int Nmats = cc.Nmats;
int mmc_cells = ccc.mmc_cells;
int mm_len = ccc.mm_len;
#ifdef DEBUG
printf("Checking results of compact representation... ");
#endif
for (int j = 0; j < sizey; j++) {
for (int i = 0; i < sizex; i++) {
if (fabs(cc.rho_ave[i+sizex*j] - ccc.rho_ave_compact[i+sizex*j]) > 0.0001) {
printf("1. full matrix and compact cell-centric values are not equal! (%f, %f, %d, %d)\n",
cc.rho_ave[i+sizex*j], ccc.rho_ave_compact[i+sizex*j], i, j);
return false;
}
int ix = ccc.imaterial[i+sizex*j];
if (ix <= 0) {
#ifdef LINKED
for (ix = -ix; ix >= 0; ix = ccc.nextfrac[ix]) {
#else
for (int ix = ccc.mmc_index[-ccc.imaterial[i+sizex*j]]; ix < ccc.mmc_index[-ccc.imaterial[i+sizex*j]+1]; ix++) {
#endif
int mat = ccc.matids[ix];
if (fabs(cc.p[(i+sizex*j)*Nmats+mat] - ccc.p_compact_list[ix]) > 0.0001) {
printf("2. full matrix and compact cell-centric values are not equal! (%f, %f, %d, %d, %d)\n",
cc.p[(i+sizex*j)*Nmats+mat], ccc.p_compact_list[ix], i, j, mat);
return false;
}
if (fabs(cc.rho_mat_ave[(i+sizex*j)*Nmats+mat] - ccc.rho_mat_ave_compact_list[ix]) > 0.0001) {
printf("3. full matrix and compact cell-centric values are not equal! (%f, %f, %d, %d, %d)\n",
cc.rho_mat_ave[(i+sizex*j)*Nmats+mat], ccc.rho_mat_ave_compact_list[ix], i, j, mat);
return false;
}
}
}
else {
// NOTE: HACK: we index materials from zero, but zero can be a list index
int mat = ix - 1;
if (fabs(cc.p[(i+sizex*j)*Nmats+mat] - ccc.p_compact[i+sizex*j]) > 0.0001) {
printf("2. full matrix and compact cell-centric values are not equal! (%f, %f, %d, %d, %d)\n",
cc.p[(i+sizex*j)*Nmats+mat], ccc.p_compact[i+sizex*j], i, j, mat);
return false;
}
if (fabs(cc.rho_mat_ave[(i+sizex*j)*Nmats+mat] - ccc.rho_mat_ave_compact[i+sizex*j]) > 0.0001) {
printf("3. full matrix and compact cell-centric values are not equal! (%f, %f, %d, %d, %d)\n",
cc.rho_mat_ave[(i+sizex*j)*Nmats+mat], ccc.rho_mat_ave_compact[i+sizex*j], i, j, mat);
return false;
}
}
}
}
#ifdef DEBUG
printf("All tests passed!\n");
#endif
return true;
}