Tries to load any file into a pandas DataFrame, with a minimum of configuration, and a focus on bioinformatics
Typically, you’ll read a file from disk (open('my-file.txt', 'rb')
),
but a byte stream is simpler here.
>>> from io import BytesIO
>>> from dataframer import dataframer
>>> from pandas import set_option
>>> set_option('display.max_columns', None)
>>> bytes = b'a,b,c,z\n1,2,3,foo\n4,5,6,bar'
>>> stream = BytesIO(bytes)
Default behavior is to strip non-numeric values after the first column.
>>> df_info = dataframer.parse(stream)
>>> df_info.data_frame
b c
a
1 2 3
4 5 6
>>> df_info.label_map is None
True
Alternatively, they can be preserved in place...
>>> df_info = dataframer.parse(stream, keep_strings=True)
>>> df_info.data_frame
b c z
a
1 2 3 foo
4 5 6 bar
>>> df_info.label_map is None
True
... or they can be used to compose more meaningful row labels.
>>> df_info = dataframer.parse(stream, relabel=True)
>>> df_info.data_frame
b c
a
1 2 3
4 5 6
>>> df_info.label_map
{1: 'foo / 1', 4: 'bar / 4'}
Alternatively, the first column can also be treated as data.
>>> df_info = dataframer.parse(stream, col_zero_index=False)
>>> df_info.data_frame
a b c
0 1 2 3
1 4 5 6
>>> df_info.label_map is None
True
If you don't need the whole file, but instead only want the first row for column information:
>>> df_info = dataframer.parse(stream, first_row_only=True)
>>> df_info.data_frame
b c
a
1 2 3
>>> df_info.label_map is None
True
Single column lists are given an implicit header:
>>> bytes = b'banana\napple\npear'
>>> stream = BytesIO(bytes)
>>> df_info = dataframer.parse(stream)
>>> df_info.data_frame
item
0 banana
1 apple
2 pear
In your branch update VERSION.txt
, using semantic versioning: When the PR
is merged, the successful Travis build will push a new version to pypi.