-
Notifications
You must be signed in to change notification settings - Fork 0
/
lbfgs.h
1459 lines (1347 loc) · 51 KB
/
lbfgs.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#ifndef SCITBX_LBFGS_H
#define SCITBX_LBFGS_H
#include <cstdio>
#include <cstddef>
#include <cmath>
#include <stdexcept>
#include <algorithm>
#include <vector>
#include <string>
#include <iostream>
#include <sstream>
namespace scitbx {
//! Limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) %minimizer.
/*! Implementation of the
Limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS)
algorithm for large-scale multidimensional minimization
problems.
This code was manually derived from Java code which was
in turn derived from the Fortran program
<code>lbfgs.f</code>. The Java translation was
effected mostly mechanically, with some manual
clean-up; in particular, array indices start at 0
instead of 1. Most of the comments from the Fortran
code have been pasted in.
Information on the original LBFGS Fortran source code is
available at
http://www.netlib.org/opt/lbfgs_um.shar . The following
information is taken verbatim from the Netlib documentation
for the Fortran source.
<pre>
file opt/lbfgs_um.shar
for unconstrained optimization problems
alg limited memory BFGS method
by J. Nocedal
contact nocedal@eecs.nwu.edu
ref D. C. Liu and J. Nocedal, ``On the limited memory BFGS method for
, large scale optimization methods'' Mathematical Programming 45
, (1989), pp. 503-528.
, (Postscript file of this paper is available via anonymous ftp
, to eecs.nwu.edu in the directory pub/%lbfgs/lbfgs_um.)
</pre>
@author Jorge Nocedal: original Fortran version, including comments
(July 1990).<br>
Robert Dodier: Java translation, August 1997.<br>
Ralf W. Grosse-Kunstleve: C++ port, March 2002.<br>
Chris Dyer: serialize/deserialize functionality
*/
namespace lbfgs {
//! Generic exception class for %lbfgs %error messages.
/*! All exceptions thrown by the minimizer are derived from this class.
*/
class error : public std::exception {
public:
//! Constructor.
error(std::string const& msg) throw()
: msg_("lbfgs error: " + msg)
{}
//! Access to error message.
virtual const char* what() const throw() { return msg_.c_str(); }
protected:
virtual ~error() throw() {}
std::string msg_;
public:
static std::string itoa(unsigned long i) {
std::ostringstream os;
os << i;
return os.str();
}
};
//! Specific exception class.
class error_internal_error : public error {
public:
//! Constructor.
error_internal_error(const char* file, unsigned long line) throw()
: error(
"Internal Error: " + std::string(file) + "(" + itoa(line) + ")")
{}
};
//! Specific exception class.
class error_improper_input_parameter : public error {
public:
//! Constructor.
error_improper_input_parameter(std::string const& msg) throw()
: error("Improper input parameter: " + msg)
{}
};
//! Specific exception class.
class error_improper_input_data : public error {
public:
//! Constructor.
error_improper_input_data(std::string const& msg) throw()
: error("Improper input data: " + msg)
{}
};
//! Specific exception class.
class error_search_direction_not_descent : public error {
public:
//! Constructor.
error_search_direction_not_descent() throw()
: error("The search direction is not a descent direction.")
{}
};
//! Specific exception class.
class error_line_search_failed : public error {
public:
//! Constructor.
error_line_search_failed(std::string const& msg) throw()
: error("Line search failed: " + msg)
{}
};
//! Specific exception class.
class error_line_search_failed_rounding_errors
: public error_line_search_failed {
public:
//! Constructor.
error_line_search_failed_rounding_errors(std::string const& msg) throw()
: error_line_search_failed(msg)
{}
};
namespace detail {
template <typename NumType>
inline
NumType
pow2(NumType const& x) { return x * x; }
template <typename NumType>
inline
NumType
abs(NumType const& x) {
if (x < NumType(0)) return -x;
return x;
}
// This class implements an algorithm for multi-dimensional line search.
template <typename FloatType, typename SizeType = std::size_t>
class mcsrch
{
protected:
int infoc;
FloatType dginit;
bool brackt;
bool stage1;
FloatType finit;
FloatType dgtest;
FloatType width;
FloatType width1;
FloatType stx;
FloatType fx;
FloatType dgx;
FloatType sty;
FloatType fy;
FloatType dgy;
FloatType stmin;
FloatType stmax;
static FloatType const& max3(
FloatType const& x,
FloatType const& y,
FloatType const& z)
{
return x < y ? (y < z ? z : y ) : (x < z ? z : x );
}
public:
/* Minimize a function along a search direction. This code is
a Java translation of the function <code>MCSRCH</code> from
<code>lbfgs.f</code>, which in turn is a slight modification
of the subroutine <code>CSRCH</code> of More' and Thuente.
The changes are to allow reverse communication, and do not
affect the performance of the routine. This function, in turn,
calls <code>mcstep</code>.<p>
The Java translation was effected mostly mechanically, with
some manual clean-up; in particular, array indices start at 0
instead of 1. Most of the comments from the Fortran code have
been pasted in here as well.<p>
The purpose of <code>mcsrch</code> is to find a step which
satisfies a sufficient decrease condition and a curvature
condition.<p>
At each stage this function updates an interval of uncertainty
with endpoints <code>stx</code> and <code>sty</code>. The
interval of uncertainty is initially chosen so that it
contains a minimizer of the modified function
<pre>
f(x+stp*s) - f(x) - ftol*stp*(gradf(x)'s).
</pre>
If a step is obtained for which the modified function has a
nonpositive function value and nonnegative derivative, then
the interval of uncertainty is chosen so that it contains a
minimizer of <code>f(x+stp*s)</code>.<p>
The algorithm is designed to find a step which satisfies
the sufficient decrease condition
<pre>
f(x+stp*s) <= f(X) + ftol*stp*(gradf(x)'s),
</pre>
and the curvature condition
<pre>
abs(gradf(x+stp*s)'s)) <= gtol*abs(gradf(x)'s).
</pre>
If <code>ftol</code> is less than <code>gtol</code> and if,
for example, the function is bounded below, then there is
always a step which satisfies both conditions. If no step can
be found which satisfies both conditions, then the algorithm
usually stops when rounding errors prevent further progress.
In this case <code>stp</code> only satisfies the sufficient
decrease condition.<p>
@author Original Fortran version by Jorge J. More' and
David J. Thuente as part of the Minpack project, June 1983,
Argonne National Laboratory. Java translation by Robert
Dodier, August 1997.
@param n The number of variables.
@param x On entry this contains the base point for the line
search. On exit it contains <code>x + stp*s</code>.
@param f On entry this contains the value of the objective
function at <code>x</code>. On exit it contains the value
of the objective function at <code>x + stp*s</code>.
@param g On entry this contains the gradient of the objective
function at <code>x</code>. On exit it contains the gradient
at <code>x + stp*s</code>.
@param s The search direction.
@param stp On entry this contains an initial estimate of a
satifactory step length. On exit <code>stp</code> contains
the final estimate.
@param ftol Tolerance for the sufficient decrease condition.
@param xtol Termination occurs when the relative width of the
interval of uncertainty is at most <code>xtol</code>.
@param maxfev Termination occurs when the number of evaluations
of the objective function is at least <code>maxfev</code> by
the end of an iteration.
@param info This is an output variable, which can have these
values:
<ul>
<li><code>info = -1</code> A return is made to compute
the function and gradient.
<li><code>info = 1</code> The sufficient decrease condition
and the directional derivative condition hold.
</ul>
@param nfev On exit, this is set to the number of function
evaluations.
@param wa Temporary storage array, of length <code>n</code>.
*/
void run(
FloatType const& gtol,
FloatType const& stpmin,
FloatType const& stpmax,
SizeType n,
FloatType* x,
FloatType f,
const FloatType* g,
FloatType* s,
SizeType is0,
FloatType& stp,
FloatType ftol,
FloatType xtol,
SizeType maxfev,
int& info,
SizeType& nfev,
FloatType* wa);
/* The purpose of this function is to compute a safeguarded step
for a linesearch and to update an interval of uncertainty for
a minimizer of the function.<p>
The parameter <code>stx</code> contains the step with the
least function value. The parameter <code>stp</code> contains
the current step. It is assumed that the derivative at
<code>stx</code> is negative in the direction of the step. If
<code>brackt</code> is <code>true</code> when
<code>mcstep</code> returns then a minimizer has been
bracketed in an interval of uncertainty with endpoints
<code>stx</code> and <code>sty</code>.<p>
Variables that must be modified by <code>mcstep</code> are
implemented as 1-element arrays.
@param stx Step at the best step obtained so far.
This variable is modified by <code>mcstep</code>.
@param fx Function value at the best step obtained so far.
This variable is modified by <code>mcstep</code>.
@param dx Derivative at the best step obtained so far.
The derivative must be negative in the direction of the
step, that is, <code>dx</code> and <code>stp-stx</code> must
have opposite signs. This variable is modified by
<code>mcstep</code>.
@param sty Step at the other endpoint of the interval of
uncertainty. This variable is modified by <code>mcstep</code>.
@param fy Function value at the other endpoint of the interval
of uncertainty. This variable is modified by
<code>mcstep</code>.
@param dy Derivative at the other endpoint of the interval of
uncertainty. This variable is modified by <code>mcstep</code>.
@param stp Step at the current step. If <code>brackt</code> is set
then on input <code>stp</code> must be between <code>stx</code>
and <code>sty</code>. On output <code>stp</code> is set to the
new step.
@param fp Function value at the current step.
@param dp Derivative at the current step.
@param brackt Tells whether a minimizer has been bracketed.
If the minimizer has not been bracketed, then on input this
variable must be set <code>false</code>. If the minimizer has
been bracketed, then on output this variable is
<code>true</code>.
@param stpmin Lower bound for the step.
@param stpmax Upper bound for the step.
If the return value is 1, 2, 3, or 4, then the step has
been computed successfully. A return value of 0 indicates
improper input parameters.
@author Jorge J. More, David J. Thuente: original Fortran version,
as part of Minpack project. Argonne Nat'l Laboratory, June 1983.
Robert Dodier: Java translation, August 1997.
*/
static int mcstep(
FloatType& stx,
FloatType& fx,
FloatType& dx,
FloatType& sty,
FloatType& fy,
FloatType& dy,
FloatType& stp,
FloatType fp,
FloatType dp,
bool& brackt,
FloatType stpmin,
FloatType stpmax);
void serialize(std::ostream* out) const {
out->write((const char*)&infoc,sizeof(infoc));
out->write((const char*)&dginit,sizeof(dginit));
out->write((const char*)&brackt,sizeof(brackt));
out->write((const char*)&stage1,sizeof(stage1));
out->write((const char*)&finit,sizeof(finit));
out->write((const char*)&dgtest,sizeof(dgtest));
out->write((const char*)&width,sizeof(width));
out->write((const char*)&width1,sizeof(width1));
out->write((const char*)&stx,sizeof(stx));
out->write((const char*)&fx,sizeof(fx));
out->write((const char*)&dgx,sizeof(dgx));
out->write((const char*)&sty,sizeof(sty));
out->write((const char*)&fy,sizeof(fy));
out->write((const char*)&dgy,sizeof(dgy));
out->write((const char*)&stmin,sizeof(stmin));
out->write((const char*)&stmax,sizeof(stmax));
}
void deserialize(std::istream* in) const {
in->read((char*)&infoc, sizeof(infoc));
in->read((char*)&dginit, sizeof(dginit));
in->read((char*)&brackt, sizeof(brackt));
in->read((char*)&stage1, sizeof(stage1));
in->read((char*)&finit, sizeof(finit));
in->read((char*)&dgtest, sizeof(dgtest));
in->read((char*)&width, sizeof(width));
in->read((char*)&width1, sizeof(width1));
in->read((char*)&stx, sizeof(stx));
in->read((char*)&fx, sizeof(fx));
in->read((char*)&dgx, sizeof(dgx));
in->read((char*)&sty, sizeof(sty));
in->read((char*)&fy, sizeof(fy));
in->read((char*)&dgy, sizeof(dgy));
in->read((char*)&stmin, sizeof(stmin));
in->read((char*)&stmax, sizeof(stmax));
}
};
template <typename FloatType, typename SizeType>
void mcsrch<FloatType, SizeType>::run(
FloatType const& gtol,
FloatType const& stpmin,
FloatType const& stpmax,
SizeType n,
FloatType* x,
FloatType f,
const FloatType* g,
FloatType* s,
SizeType is0,
FloatType& stp,
FloatType ftol,
FloatType xtol,
SizeType maxfev,
int& info,
SizeType& nfev,
FloatType* wa)
{
if (info != -1) {
infoc = 1;
if ( n == 0
|| maxfev == 0
|| gtol < FloatType(0)
|| xtol < FloatType(0)
|| stpmin < FloatType(0)
|| stpmax < stpmin) {
throw error_internal_error(__FILE__, __LINE__);
}
if (stp <= FloatType(0) || ftol < FloatType(0)) {
throw error_internal_error(__FILE__, __LINE__);
}
// Compute the initial gradient in the search direction
// and check that s is a descent direction.
dginit = FloatType(0);
for (SizeType j = 0; j < n; j++) {
dginit += g[j] * s[is0+j];
}
if (dginit >= FloatType(0)) {
throw error_search_direction_not_descent();
}
brackt = false;
stage1 = true;
nfev = 0;
finit = f;
dgtest = ftol*dginit;
width = stpmax - stpmin;
width1 = FloatType(2) * width;
std::copy(x, x+n, wa);
// The variables stx, fx, dgx contain the values of the step,
// function, and directional derivative at the best step.
// The variables sty, fy, dgy contain the value of the step,
// function, and derivative at the other endpoint of
// the interval of uncertainty.
// The variables stp, f, dg contain the values of the step,
// function, and derivative at the current step.
stx = FloatType(0);
fx = finit;
dgx = dginit;
sty = FloatType(0);
fy = finit;
dgy = dginit;
}
for (;;) {
if (info != -1) {
// Set the minimum and maximum steps to correspond
// to the present interval of uncertainty.
if (brackt) {
stmin = std::min(stx, sty);
stmax = std::max(stx, sty);
}
else {
stmin = stx;
stmax = stp + FloatType(4) * (stp - stx);
}
// Force the step to be within the bounds stpmax and stpmin.
stp = std::max(stp, stpmin);
stp = std::min(stp, stpmax);
// If an unusual termination is to occur then let
// stp be the lowest point obtained so far.
if ( (brackt && (stp <= stmin || stp >= stmax))
|| nfev >= maxfev - 1 || infoc == 0
|| (brackt && stmax - stmin <= xtol * stmax)) {
stp = stx;
}
// Evaluate the function and gradient at stp
// and compute the directional derivative.
// We return to main program to obtain F and G.
for (SizeType j = 0; j < n; j++) {
x[j] = wa[j] + stp * s[is0+j];
}
info=-1;
break;
}
info = 0;
nfev++;
FloatType dg(0);
for (SizeType j = 0; j < n; j++) {
dg += g[j] * s[is0+j];
}
FloatType ftest1 = finit + stp*dgtest;
// Test for convergence.
if ((brackt && (stp <= stmin || stp >= stmax)) || infoc == 0) {
throw error_line_search_failed_rounding_errors(
"Rounding errors prevent further progress."
" There may not be a step which satisfies the"
" sufficient decrease and curvature conditions."
" Tolerances may be too small.");
}
if (stp == stpmax && f <= ftest1 && dg <= dgtest) {
throw error_line_search_failed(
"The step is at the upper bound stpmax().");
}
if (stp == stpmin && (f > ftest1 || dg >= dgtest)) {
throw error_line_search_failed(
"The step is at the lower bound stpmin().");
}
if (nfev >= maxfev) {
throw error_line_search_failed(
"Number of function evaluations has reached maxfev().");
}
if (brackt && stmax - stmin <= xtol * stmax) {
throw error_line_search_failed(
"Relative width of the interval of uncertainty"
" is at most xtol().");
}
// Check for termination.
if (f <= ftest1 && abs(dg) <= gtol * (-dginit)) {
info = 1;
break;
}
// In the first stage we seek a step for which the modified
// function has a nonpositive value and nonnegative derivative.
if ( stage1 && f <= ftest1
&& dg >= std::min(ftol, gtol) * dginit) {
stage1 = false;
}
// A modified function is used to predict the step only if
// we have not obtained a step for which the modified
// function has a nonpositive function value and nonnegative
// derivative, and if a lower function value has been
// obtained but the decrease is not sufficient.
if (stage1 && f <= fx && f > ftest1) {
// Define the modified function and derivative values.
FloatType fm = f - stp*dgtest;
FloatType fxm = fx - stx*dgtest;
FloatType fym = fy - sty*dgtest;
FloatType dgm = dg - dgtest;
FloatType dgxm = dgx - dgtest;
FloatType dgym = dgy - dgtest;
// Call cstep to update the interval of uncertainty
// and to compute the new step.
infoc = mcstep(stx, fxm, dgxm, sty, fym, dgym, stp, fm, dgm,
brackt, stmin, stmax);
// Reset the function and gradient values for f.
fx = fxm + stx*dgtest;
fy = fym + sty*dgtest;
dgx = dgxm + dgtest;
dgy = dgym + dgtest;
}
else {
// Call mcstep to update the interval of uncertainty
// and to compute the new step.
infoc = mcstep(stx, fx, dgx, sty, fy, dgy, stp, f, dg,
brackt, stmin, stmax);
}
// Force a sufficient decrease in the size of the
// interval of uncertainty.
if (brackt) {
if (abs(sty - stx) >= FloatType(0.66) * width1) {
stp = stx + FloatType(0.5) * (sty - stx);
}
width1 = width;
width = abs(sty - stx);
}
}
}
template <typename FloatType, typename SizeType>
int mcsrch<FloatType, SizeType>::mcstep(
FloatType& stx,
FloatType& fx,
FloatType& dx,
FloatType& sty,
FloatType& fy,
FloatType& dy,
FloatType& stp,
FloatType fp,
FloatType dp,
bool& brackt,
FloatType stpmin,
FloatType stpmax)
{
bool bound;
FloatType gamma, p, q, r, s, sgnd, stpc, stpf, stpq, theta;
int info = 0;
if ( ( brackt && (stp <= std::min(stx, sty)
|| stp >= std::max(stx, sty)))
|| dx * (stp - stx) >= FloatType(0) || stpmax < stpmin) {
return 0;
}
// Determine if the derivatives have opposite sign.
sgnd = dp * (dx / abs(dx));
if (fp > fx) {
// First case. A higher function value.
// The minimum is bracketed. If the cubic step is closer
// to stx than the quadratic step, the cubic step is taken,
// else the average of the cubic and quadratic steps is taken.
info = 1;
bound = true;
theta = FloatType(3) * (fx - fp) / (stp - stx) + dx + dp;
s = max3(abs(theta), abs(dx), abs(dp));
gamma = s * std::sqrt(pow2(theta / s) - (dx / s) * (dp / s));
if (stp < stx) gamma = - gamma;
p = (gamma - dx) + theta;
q = ((gamma - dx) + gamma) + dp;
r = p/q;
stpc = stx + r * (stp - stx);
stpq = stx
+ ((dx / ((fx - fp) / (stp - stx) + dx)) / FloatType(2))
* (stp - stx);
if (abs(stpc - stx) < abs(stpq - stx)) {
stpf = stpc;
}
else {
stpf = stpc + (stpq - stpc) / FloatType(2);
}
brackt = true;
}
else if (sgnd < FloatType(0)) {
// Second case. A lower function value and derivatives of
// opposite sign. The minimum is bracketed. If the cubic
// step is closer to stx than the quadratic (secant) step,
// the cubic step is taken, else the quadratic step is taken.
info = 2;
bound = false;
theta = FloatType(3) * (fx - fp) / (stp - stx) + dx + dp;
s = max3(abs(theta), abs(dx), abs(dp));
gamma = s * std::sqrt(pow2(theta / s) - (dx / s) * (dp / s));
if (stp > stx) gamma = - gamma;
p = (gamma - dp) + theta;
q = ((gamma - dp) + gamma) + dx;
r = p/q;
stpc = stp + r * (stx - stp);
stpq = stp + (dp / (dp - dx)) * (stx - stp);
if (abs(stpc - stp) > abs(stpq - stp)) {
stpf = stpc;
}
else {
stpf = stpq;
}
brackt = true;
}
else if (abs(dp) < abs(dx)) {
// Third case. A lower function value, derivatives of the
// same sign, and the magnitude of the derivative decreases.
// The cubic step is only used if the cubic tends to infinity
// in the direction of the step or if the minimum of the cubic
// is beyond stp. Otherwise the cubic step is defined to be
// either stpmin or stpmax. The quadratic (secant) step is also
// computed and if the minimum is bracketed then the the step
// closest to stx is taken, else the step farthest away is taken.
info = 3;
bound = true;
theta = FloatType(3) * (fx - fp) / (stp - stx) + dx + dp;
s = max3(abs(theta), abs(dx), abs(dp));
gamma = s * std::sqrt(
std::max(FloatType(0), pow2(theta / s) - (dx / s) * (dp / s)));
if (stp > stx) gamma = -gamma;
p = (gamma - dp) + theta;
q = (gamma + (dx - dp)) + gamma;
r = p/q;
if (r < FloatType(0) && gamma != FloatType(0)) {
stpc = stp + r * (stx - stp);
}
else if (stp > stx) {
stpc = stpmax;
}
else {
stpc = stpmin;
}
stpq = stp + (dp / (dp - dx)) * (stx - stp);
if (brackt) {
if (abs(stp - stpc) < abs(stp - stpq)) {
stpf = stpc;
}
else {
stpf = stpq;
}
}
else {
if (abs(stp - stpc) > abs(stp - stpq)) {
stpf = stpc;
}
else {
stpf = stpq;
}
}
}
else {
// Fourth case. A lower function value, derivatives of the
// same sign, and the magnitude of the derivative does
// not decrease. If the minimum is not bracketed, the step
// is either stpmin or stpmax, else the cubic step is taken.
info = 4;
bound = false;
if (brackt) {
theta = FloatType(3) * (fp - fy) / (sty - stp) + dy + dp;
s = max3(abs(theta), abs(dy), abs(dp));
gamma = s * std::sqrt(pow2(theta / s) - (dy / s) * (dp / s));
if (stp > sty) gamma = -gamma;
p = (gamma - dp) + theta;
q = ((gamma - dp) + gamma) + dy;
r = p/q;
stpc = stp + r * (sty - stp);
stpf = stpc;
}
else if (stp > stx) {
stpf = stpmax;
}
else {
stpf = stpmin;
}
}
// Update the interval of uncertainty. This update does not
// depend on the new step or the case analysis above.
if (fp > fx) {
sty = stp;
fy = fp;
dy = dp;
}
else {
if (sgnd < FloatType(0)) {
sty = stx;
fy = fx;
dy = dx;
}
stx = stp;
fx = fp;
dx = dp;
}
// Compute the new step and safeguard it.
stpf = std::min(stpmax, stpf);
stpf = std::max(stpmin, stpf);
stp = stpf;
if (brackt && bound) {
if (sty > stx) {
stp = std::min(stx + FloatType(0.66) * (sty - stx), stp);
}
else {
stp = std::max(stx + FloatType(0.66) * (sty - stx), stp);
}
}
return info;
}
/* Compute the sum of a vector times a scalar plus another vector.
Adapted from the subroutine <code>daxpy</code> in
<code>lbfgs.f</code>.
*/
template <typename FloatType, typename SizeType>
void daxpy(
SizeType n,
FloatType da,
const FloatType* dx,
SizeType ix0,
SizeType incx,
FloatType* dy,
SizeType iy0,
SizeType incy)
{
SizeType i, ix, iy, m;
if (n == 0) return;
if (da == FloatType(0)) return;
if (!(incx == 1 && incy == 1)) {
ix = 0;
iy = 0;
for (i = 0; i < n; i++) {
dy[iy0+iy] += da * dx[ix0+ix];
ix += incx;
iy += incy;
}
return;
}
m = n % 4;
for (i = 0; i < m; i++) {
dy[iy0+i] += da * dx[ix0+i];
}
for (; i < n;) {
dy[iy0+i] += da * dx[ix0+i]; i++;
dy[iy0+i] += da * dx[ix0+i]; i++;
dy[iy0+i] += da * dx[ix0+i]; i++;
dy[iy0+i] += da * dx[ix0+i]; i++;
}
}
template <typename FloatType, typename SizeType>
inline
void daxpy(
SizeType n,
FloatType da,
const FloatType* dx,
SizeType ix0,
FloatType* dy)
{
daxpy(n, da, dx, ix0, SizeType(1), dy, SizeType(0), SizeType(1));
}
/* Compute the dot product of two vectors.
Adapted from the subroutine <code>ddot</code>
in <code>lbfgs.f</code>.
*/
template <typename FloatType, typename SizeType>
FloatType ddot(
SizeType n,
const FloatType* dx,
SizeType ix0,
SizeType incx,
const FloatType* dy,
SizeType iy0,
SizeType incy)
{
SizeType i, ix, iy, m;
FloatType dtemp(0);
if (n == 0) return FloatType(0);
if (!(incx == 1 && incy == 1)) {
ix = 0;
iy = 0;
for (i = 0; i < n; i++) {
dtemp += dx[ix0+ix] * dy[iy0+iy];
ix += incx;
iy += incy;
}
return dtemp;
}
m = n % 5;
for (i = 0; i < m; i++) {
dtemp += dx[ix0+i] * dy[iy0+i];
}
for (; i < n;) {
dtemp += dx[ix0+i] * dy[iy0+i]; i++;
dtemp += dx[ix0+i] * dy[iy0+i]; i++;
dtemp += dx[ix0+i] * dy[iy0+i]; i++;
dtemp += dx[ix0+i] * dy[iy0+i]; i++;
dtemp += dx[ix0+i] * dy[iy0+i]; i++;
}
return dtemp;
}
template <typename FloatType, typename SizeType>
inline
FloatType ddot(
SizeType n,
const FloatType* dx,
const FloatType* dy)
{
return ddot(
n, dx, SizeType(0), SizeType(1), dy, SizeType(0), SizeType(1));
}
} // namespace detail
//! Interface to the LBFGS %minimizer.
/*! This class solves the unconstrained minimization problem
<pre>
min f(x), x = (x1,x2,...,x_n),
</pre>
using the limited-memory BFGS method. The routine is
especially effective on problems involving a large number of
variables. In a typical iteration of this method an
approximation Hk to the inverse of the Hessian
is obtained by applying <code>m</code> BFGS updates to a
diagonal matrix Hk0, using information from the
previous <code>m</code> steps. The user specifies the number
<code>m</code>, which determines the amount of storage
required by the routine. The user may also provide the
diagonal matrices Hk0 (parameter <code>diag</code> in the run()
function) if not satisfied with the default choice. The
algorithm is described in "On the limited memory BFGS method for
large scale optimization", by D. Liu and J. Nocedal, Mathematical
Programming B 45 (1989) 503-528.
The user is required to calculate the function value
<code>f</code> and its gradient <code>g</code>. In order to
allow the user complete control over these computations,
reverse communication is used. The routine must be called
repeatedly under the control of the member functions
<code>requests_f_and_g()</code>,
<code>requests_diag()</code>.
If neither requests_f_and_g() nor requests_diag() is
<code>true</code> the user should check for convergence
(using class traditional_convergence_test or any
other custom test). If the convergence test is negative,
the minimizer may be called again for the next iteration.
The steplength (stp()) is determined at each iteration
by means of the line search routine <code>mcsrch</code>, which is
a slight modification of the routine <code>CSRCH</code> written
by More' and Thuente.
The only variables that are machine-dependent are
<code>xtol</code>,
<code>stpmin</code> and
<code>stpmax</code>.
Fatal errors cause <code>error</code> exceptions to be thrown.
The generic class <code>error</code> is sub-classed (e.g.
class <code>error_line_search_failed</code>) to facilitate
granular %error handling.
A note on performance: Using Compaq Fortran V5.4 and
Compaq C++ V6.5, the C++ implementation is about 15% slower
than the Fortran implementation.
*/
template <typename FloatType, typename SizeType = std::size_t>
class minimizer
{
public:
//! Default constructor. Some members are not initialized!
minimizer()
: n_(0), m_(0), maxfev_(0),
gtol_(0), xtol_(0),
stpmin_(0), stpmax_(0),
ispt(0), iypt(0)
{}
//! Constructor.
/*! @param n The number of variables in the minimization problem.
Restriction: <code>n > 0</code>.
@param m The number of corrections used in the BFGS update.
Values of <code>m</code> less than 3 are not recommended;
large values of <code>m</code> will result in excessive
computing time. <code>3 <= m <= 7</code> is
recommended.
Restriction: <code>m > 0</code>.
@param maxfev Maximum number of function evaluations
<b>per line search</b>.
Termination occurs when the number of evaluations
of the objective function is at least <code>maxfev</code> by
the end of an iteration.
@param gtol Controls the accuracy of the line search.
If the function and gradient evaluations are inexpensive with
respect to the cost of the iteration (which is sometimes the
case when solving very large problems) it may be advantageous
to set <code>gtol</code> to a small value. A typical small
value is 0.1.
Restriction: <code>gtol</code> should be greater than 1e-4.
@param xtol An estimate of the machine precision (e.g. 10e-16
on a SUN station 3/60). The line search routine will
terminate if the relative width of the interval of
uncertainty is less than <code>xtol</code>.
@param stpmin Specifies the lower bound for the step
in the line search.
The default value is 1e-20. This value need not be modified
unless the exponent is too large for the machine being used,
or unless the problem is extremely badly scaled (in which
case the exponent should be increased).
@param stpmax specifies the upper bound for the step
in the line search.
The default value is 1e20. This value need not be modified
unless the exponent is too large for the machine being used,
or unless the problem is extremely badly scaled (in which
case the exponent should be increased).
*/
explicit
minimizer(
SizeType n,
SizeType m = 5,
SizeType maxfev = 20,
FloatType gtol = FloatType(0.9),
FloatType xtol = FloatType(1.e-16),
FloatType stpmin = FloatType(1.e-20),
FloatType stpmax = FloatType(1.e20))
: n_(n), m_(m), maxfev_(maxfev),
gtol_(gtol), xtol_(xtol),
stpmin_(stpmin), stpmax_(stpmax),
iflag_(0), requests_f_and_g_(false), requests_diag_(false),
iter_(0), nfun_(0), stp_(0),
stp1(0), ftol(0.0001), ys(0), point(0), npt(0),
ispt(n+2*m), iypt((n+2*m)+n*m),
info(0), bound(0), nfev(0)
{
if (n_ == 0) {
throw error_improper_input_parameter("n = 0.");
}
if (m_ == 0) {
throw error_improper_input_parameter("m = 0.");
}
if (maxfev_ == 0) {
throw error_improper_input_parameter("maxfev = 0.");
}