You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
During learning, computing the loss and its gradient relative to the parameters (especially with large numbers of training instances or features) can be quite expensive. OpenMP (http://openmp.org/wp/), which is supported by default with g++, could easily be used to parallelize this computation. Basically, all the loops of the following form
for (unsigned i = 0; i < training.size(); ++i)
are good candidates for parallelization. Reading about OpenMP such "reductions" will have to be implemented by creating a gradients buffer per thread and then summing them at the end (although this summing could also be parallelized).
The text was updated successfully, but these errors were encountered:
During learning, computing the loss and its gradient relative to the parameters (especially with large numbers of training instances or features) can be quite expensive. OpenMP (http://openmp.org/wp/), which is supported by default with g++, could easily be used to parallelize this computation. Basically, all the loops of the following form
for (unsigned i = 0; i < training.size(); ++i)
are good candidates for parallelization. Reading about OpenMP such "reductions" will have to be implemented by creating a gradients buffer per thread and then summing them at the end (although this summing could also be parallelized).
The text was updated successfully, but these errors were encountered: