Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

adds scorer to AggregateRequest #3409

Merged
merged 8 commits into from
Oct 22, 2024
Merged
Show file tree
Hide file tree
Changes from 6 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 26 additions & 0 deletions redis/commands/search/aggregation.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,18 @@
from enum import Enum
from typing import List, Union

FIELDNAME = object()


class Scorers(Enum):
TFIDF = "TFIDF"
vladvildanov marked this conversation as resolved.
Show resolved Hide resolved
TFIDF_DOCNORM = "TFIDF.DOCNORM"
BM25 = "BM25"
DISMAX = "DISMAX"
DOCSCORE = "DOCSCORE"
HAMMING = "HAMMING"


class Limit:
def __init__(self, offset: int = 0, count: int = 0) -> None:
self.offset = offset
Expand Down Expand Up @@ -112,6 +122,7 @@ def __init__(self, query: str = "*") -> None:
self._cursor = []
self._dialect = None
self._add_scores = False
self._scorer = Scorers.TFIDF.value
vladvildanov marked this conversation as resolved.
Show resolved Hide resolved

def load(self, *fields: List[str]) -> "AggregateRequest":
"""
Expand Down Expand Up @@ -300,6 +311,17 @@ def add_scores(self) -> "AggregateRequest":
self._add_scores = True
return self

def scorer(self, scorer: str) -> "AggregateRequest":
"""
Use a different scoring function to evaluate document relevance.
Default is `TFIDF`.

:param scorer: The scoring function to use
(e.g. `TFIDF.DOCNORM` or `BM25`)
rbs333 marked this conversation as resolved.
Show resolved Hide resolved
"""
self._scorer = Scorers(scorer).value
vladvildanov marked this conversation as resolved.
Show resolved Hide resolved
return self

def verbatim(self) -> "AggregateRequest":
self._verbatim = True
return self
Expand All @@ -323,6 +345,9 @@ def build_args(self) -> List[str]:
if self._verbatim:
ret.append("VERBATIM")

if self._scorer:
ret.extend(["SCORER", self._scorer])

if self._add_scores:
ret.append("ADDSCORES")

Expand All @@ -332,6 +357,7 @@ def build_args(self) -> List[str]:
if self._loadall:
ret.append("LOAD")
ret.append("*")

elif self._loadfields:
ret.append("LOAD")
ret.append(str(len(self._loadfields)))
Expand Down
63 changes: 63 additions & 0 deletions tests/test_asyncio/test_search.py
Original file line number Diff line number Diff line change
Expand Up @@ -1556,6 +1556,69 @@ async def test_aggregations_add_scores(decoded_r: redis.Redis):
assert res.rows[1] == ["__score", "0.2"]


@pytest.mark.redismod
@skip_ifmodversion_lt("2.10.05", "search")
async def test_aggregations_hybrid_scoring(decoded_r: redis.Redis):
assert await decoded_r.ft().create_index(
(
TextField("name", sortable=True, weight=5.0),
TextField("description", sortable=True, weight=5.0),
VectorField(
"vector",
"HNSW",
{"TYPE": "FLOAT32", "DIM": 2, "DISTANCE_METRIC": "COSINE"},
),
)
)

assert await decoded_r.hset(
"doc1",
mapping={
"name": "cat book",
"description": "an animal book about cats",
"vector": np.array([0.1, 0.2]).astype(np.float32).tobytes(),
},
)
assert await decoded_r.hset(
"doc2",
mapping={
"name": "dog book",
"description": "an animal book about dogs",
"vector": np.array([0.2, 0.1]).astype(np.float32).tobytes(),
},
)

query_string = "(@description:animal)=>[KNN 3 @vector $vec_param AS dist]"
req = (
aggregations.AggregateRequest(query_string)
.scorer("BM25")
.add_scores()
.apply(hybrid_score="@__score + @dist")
.load("*")
.dialect(4)
)

res = await decoded_r.ft().aggregate(
req,
query_params={"vec_param": np.array([0.11, 0.22]).astype(np.float32).tobytes()},
)

if isinstance(res, dict):
assert len(res["results"]) == 2
else:
assert len(res.rows) == 2
for row in res.rows:
len(row) == 6


@pytest.mark.redismod
@skip_ifmodversion_lt("2.10.05", "search")
async def test_invalid_scorer():

with pytest.raises(ValueError):
aggregations.AggregateRequest("*").scorer("blah")


@pytest.mark.redismod
@skip_if_redis_enterprise()
async def test_search_commands_in_pipeline(decoded_r: redis.Redis):
Expand Down
63 changes: 63 additions & 0 deletions tests/test_search.py
Original file line number Diff line number Diff line change
Expand Up @@ -1466,6 +1466,69 @@ def test_aggregations_add_scores(client):
assert res.rows[1] == ["__score", "0.2"]


@pytest.mark.redismod
@skip_ifmodversion_lt("2.10.05", "search")
async def test_aggregations_hybrid_scoring(client):
client.ft().create_index(
(
TextField("name", sortable=True, weight=5.0),
TextField("description", sortable=True, weight=5.0),
VectorField(
"vector",
"HNSW",
{"TYPE": "FLOAT32", "DIM": 2, "DISTANCE_METRIC": "COSINE"},
),
)
)

client.hset(
"doc1",
mapping={
"name": "cat book",
"description": "an animal book about cats",
"vector": np.array([0.1, 0.2]).astype(np.float32).tobytes(),
},
)
client.hset(
"doc2",
mapping={
"name": "dog book",
"description": "an animal book about dogs",
"vector": np.array([0.2, 0.1]).astype(np.float32).tobytes(),
},
)

query_string = "(@description:animal)=>[KNN 3 @vector $vec_param AS dist]"
req = (
aggregations.AggregateRequest(query_string)
.scorer("BM25")
.add_scores()
.apply(hybrid_score="@__score + @dist")
.load("*")
.dialect(4)
)

res = client.ft().aggregate(
req,
query_params={"vec_param": np.array([0.11, 0.21]).astype(np.float32).tobytes()},
)

if isinstance(res, dict):
assert len(res["results"]) == 2
else:
assert len(res.rows) == 2
for row in res.rows:
len(row) == 6


@pytest.mark.redismod
@skip_ifmodversion_lt("2.10.05", "search")
async def test_invalid_scorer():

with pytest.raises(ValueError):
aggregations.AggregateRequest("*").scorer("blah")


@pytest.mark.redismod
@skip_ifmodversion_lt("2.0.0", "search")
def test_index_definition(client):
Expand Down