-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathrun_expid.py
91 lines (80 loc) · 3.86 KB
/
run_expid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import os
os.chdir(os.path.dirname(os.path.realpath(__file__)))
import sys
# Add FuxiCTR library to system path
sys.path.append('YOUR_PATH_TO_FuxiCTR/')
# FuxiCTR v1.0.x is required in this benchmark
import fuxictr
assert fuxictr.__version__.startswith("1.0")
from fuxictr import datasets
from datetime import datetime
from fuxictr.utils import load_config, set_logger, print_to_json, print_to_list
import gc
import argparse
import logging
from pathlib import Path
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--version', type=str, default='pytorch', help='The model version.')
parser.add_argument('--config', type=str, default='../config/', help='The config directory.')
parser.add_argument('--expid', type=str, default='LR_avazu_test', help='The experiment_id to run.')
parser.add_argument('--gpu', type=int, default=-1, help='The gpu index, -1 for cpu')
args = vars(parser.parse_args())
experiment_id = args['expid']
params = load_config(args['config'], experiment_id)
if params.get('version'):
if params.get('version') != args['version']:
raise RuntimeError('The config experiment_id={} does not support {}!'\
.format(experiment_id, args['version']))
else:
params['version'] = args['version']
if args['version'] == 'tensorflow':
os.environ["CUDA_VISIBLE_DEVICES"] = str(args['gpu'])
import tensorflow as tf
from tensorflow.python.keras import backend as K
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
K.set_session(tf.Session(config=config))
from fuxictr.tensorflow import models
from fuxictr.tensorflow.utils import seed_everything
elif args['version'] == 'pytorch':
from fuxictr.pytorch import models
from fuxictr.pytorch.utils import seed_everything
params['gpu'] = args['gpu']
set_logger(params)
logging.info(print_to_json(params))
seed_everything(seed=params['seed'])
dataset = params['dataset_id'].split('_')[0].lower()
try:
ds = getattr(datasets, dataset)
except:
raise RuntimeError('Dataset={} not exist!'.format(dataset))
feature_encoder = ds.FeatureEncoder(**params)
if params.get("data_format") == 'h5':
if os.path.exists(feature_encoder.json_file):
feature_encoder.feature_map.load(feature_encoder.json_file)
else:
raise RuntimeError('feature_map not exist!')
elif params.get('pickle_feature_encoder') and os.path.exists(feature_encoder.pickle_file):
feature_encoder = feature_encoder.load_pickle(feature_encoder.pickle_file)
else:
feature_encoder.fit(**params)
model_class = getattr(models, params['model'])
model = model_class(feature_encoder.feature_map, **params)
model.count_parameters() # print number of parameters used in model
train_gen, valid_gen = datasets.data_generator(feature_encoder, stage='train', **params)
model.fit_generator(train_gen, validation_data=valid_gen, **params)
model.load_weights(model.checkpoint)
logging.info('****** Validation evaluation ******')
valid_result = model.evaluate_generator(valid_gen)
del train_gen, valid_gen
gc.collect()
logging.info('******** Test evaluation ********')
test_gen = datasets.data_generator(feature_encoder, stage='test', **params)
test_result = model.evaluate_generator(test_gen)
result_filename = Path(args['config']).name.replace(".yaml", "") + '.csv'
with open(result_filename, 'a+') as fw:
fw.write(' {},[command] python {},[exp_id] {},[dataset_id] {},[train] {},[val] {},[test] {}\n' \
.format(datetime.now().strftime('%Y%m%d-%H%M%S'),
' '.join(sys.argv), experiment_id, params['dataset_id'],
"N.A.", print_to_list(valid_result), print_to_list(test_result)))