forked from leanprover/lean4
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTransform.lean
178 lines (162 loc) · 8.13 KB
/
Transform.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
/-
Copyright (c) 2020 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
import Lean.Meta.Basic
namespace Lean
inductive TransformStep where
/-- Return expression without visiting any subexpressions. -/
| done (e : Expr)
/--
Visit expression (which should be different from current expression) instead.
The new expression `e` is passed to `pre` again.
-/
| visit (e : Expr)
/--
Continue transformation with the given expression (defaults to current expression).
For `pre`, this means visiting the children of the expression.
For `post`, this is equivalent to returning `done`. -/
| continue (e? : Option Expr := none)
namespace Core
/--
Transform the expression `input` using `pre` and `post`.
- First `pre` is invoked with the current expression and recursion is continued according to the `TransformStep` result.
In all cases, the expression contained in the result, if any, must be definitionally equal to the current expression.
- After recursion, if any, `post` is invoked on the resulting expression.
The term `s` in both `pre s` and `post s` may contain loose bound variables. So, this method is not appropriate for
if one needs to apply operations (e.g., `whnf`, `inferType`) that do not handle loose bound variables.
Consider using `Meta.transform` to avoid loose bound variables.
This method is useful for applying transformations such as beta-reduction and delta-reduction.
-/
partial def transform {m} [Monad m] [MonadLiftT CoreM m] [MonadControlT CoreM m]
(input : Expr)
(pre : Expr → m TransformStep := fun _ => return .continue)
(post : Expr → m TransformStep := fun e => return .done e)
: m Expr :=
let _ : STWorld IO.RealWorld m := ⟨⟩
let _ : MonadLiftT (ST IO.RealWorld) m := { monadLift := fun x => liftM (m := CoreM) (liftM (m := ST IO.RealWorld) x) }
let rec visit (e : Expr) : MonadCacheT ExprStructEq Expr m Expr :=
checkCache { val := e : ExprStructEq } fun _ => Core.withIncRecDepth do
let rec visitPost (e : Expr) : MonadCacheT ExprStructEq Expr m Expr := do
match (← post e) with
| .done e => pure e
| .visit e => visit e
| .continue e? => pure (e?.getD e)
match (← pre e) with
| .done e => pure e
| .visit e => visitPost (← visit e)
| .continue e? =>
let e := e?.getD e
match e with
| Expr.forallE _ d b _ => visitPost (e.updateForallE! (← visit d) (← visit b))
| Expr.lam _ d b _ => visitPost (e.updateLambdaE! (← visit d) (← visit b))
| Expr.letE _ t v b _ => visitPost (e.updateLet! (← visit t) (← visit v) (← visit b))
| Expr.app .. => e.withApp fun f args => do visitPost (mkAppN (← visit f) (← args.mapM visit))
| Expr.mdata _ b => visitPost (e.updateMData! (← visit b))
| Expr.proj _ _ b => visitPost (e.updateProj! (← visit b))
| _ => visitPost e
visit input |>.run
def betaReduce (e : Expr) : CoreM Expr :=
transform e (pre := fun e => return if e.isHeadBetaTarget then .visit e.headBeta else .continue)
end Core
namespace Meta
/--
Similar to `Core.transform`, but terms provided to `pre` and `post` do not contain loose bound variables.
So, it is safe to use any `MetaM` method at `pre` and `post`.
If `skipConstInApp := true`, then for an expression `mkAppN (.const f) args`, the subexpression
`.const f` is not visited again. Put differently: every `.const f` is visited once, with its
arguments if present, on its own otherwise.
-/
partial def transform {m} [Monad m] [MonadLiftT MetaM m] [MonadControlT MetaM m] [MonadTrace m] [MonadRef m] [MonadOptions m] [AddMessageContext m]
(input : Expr)
(pre : Expr → m TransformStep := fun _ => return .continue)
(post : Expr → m TransformStep := fun e => return .done e)
(usedLetOnly := false)
(skipConstInApp := false)
: m Expr := do
let _ : STWorld IO.RealWorld m := ⟨⟩
let _ : MonadLiftT (ST IO.RealWorld) m := { monadLift := fun x => liftM (m := MetaM) (liftM (m := ST IO.RealWorld) x) }
let rec visit (e : Expr) : MonadCacheT ExprStructEq Expr m Expr :=
checkCache { val := e : ExprStructEq } fun _ => Meta.withIncRecDepth do
let rec visitPost (e : Expr) : MonadCacheT ExprStructEq Expr m Expr := do
match (← post e) with
| .done e => pure e
| .visit e => visit e
| .continue e? => pure (e?.getD e)
let rec visitLambda (fvars : Array Expr) (e : Expr) : MonadCacheT ExprStructEq Expr m Expr := do
match e with
| Expr.lam n d b c =>
withLocalDecl n c (← visit (d.instantiateRev fvars)) fun x =>
visitLambda (fvars.push x) b
| e => visitPost (← mkLambdaFVars (usedLetOnly := usedLetOnly) fvars (← visit (e.instantiateRev fvars)))
let rec visitForall (fvars : Array Expr) (e : Expr) : MonadCacheT ExprStructEq Expr m Expr := do
match e with
| Expr.forallE n d b c =>
withLocalDecl n c (← visit (d.instantiateRev fvars)) fun x =>
visitForall (fvars.push x) b
| e => visitPost (← mkForallFVars (usedLetOnly := usedLetOnly) fvars (← visit (e.instantiateRev fvars)))
let rec visitLet (fvars : Array Expr) (e : Expr) : MonadCacheT ExprStructEq Expr m Expr := do
match e with
| Expr.letE n t v b _ =>
withLetDecl n (← visit (t.instantiateRev fvars)) (← visit (v.instantiateRev fvars)) fun x =>
visitLet (fvars.push x) b
| e => visitPost (← mkLetFVars (usedLetOnly := usedLetOnly) fvars (← visit (e.instantiateRev fvars)))
let visitApp (e : Expr) : MonadCacheT ExprStructEq Expr m Expr :=
e.withApp fun f args => do
if skipConstInApp && f.isConst then
visitPost (mkAppN f (← args.mapM visit))
else
visitPost (mkAppN (← visit f) (← args.mapM visit))
match (← pre e) with
| .done e => pure e
| .visit e => visit e
| .continue e? =>
let e := e?.getD e
match e with
| Expr.forallE .. => visitForall #[] e
| Expr.lam .. => visitLambda #[] e
| Expr.letE .. => visitLet #[] e
| Expr.app .. => visitApp e
| Expr.mdata _ b => visitPost (e.updateMData! (← visit b))
| Expr.proj _ _ b => visitPost (e.updateProj! (← visit b))
| _ => visitPost e
visit input |>.run
def zetaReduce (e : Expr) : MetaM Expr := do
let pre (e : Expr) : MetaM TransformStep := do
match e with
| Expr.fvar fvarId =>
match (← getLCtx).find? fvarId with
| none => return TransformStep.done e
| some localDecl =>
if let some value := localDecl.value? then
return TransformStep.visit value
else
return TransformStep.done e
| _ => return .continue
transform e (pre := pre) (usedLetOnly := true)
/-- Unfold definitions and theorems in `e` that are not in the current environment, but are in `biggerEnv`. -/
def unfoldDeclsFrom (biggerEnv : Environment) (e : Expr) : CoreM Expr := do
withoutModifyingEnv do
let env ← getEnv
setEnv biggerEnv -- `e` has declarations from `biggerEnv` that are not in `env`
let pre (e : Expr) : CoreM TransformStep := do
match e with
| Expr.const declName us .. =>
if env.contains declName then
return TransformStep.done e
else if let some info := biggerEnv.find? declName then
if info.hasValue then
return TransformStep.visit (← instantiateValueLevelParams info us)
else
return TransformStep.done e
else
return TransformStep.done e
| _ => return .continue
Core.transform e (pre := pre)
def eraseInaccessibleAnnotations (e : Expr) : CoreM Expr :=
Core.transform e (post := fun e => return TransformStep.done <| if let some e := inaccessible? e then e else e)
def erasePatternRefAnnotations (e : Expr) : CoreM Expr :=
Core.transform e (post := fun e => return TransformStep.done <| if let some (_, e) := patternWithRef? e then e else e)
end Meta
end Lean