forked from leanprover/lean4
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDiscrTree.lean
679 lines (611 loc) · 26.3 KB
/
DiscrTree.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
/-
Copyright (c) 2019 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
import Lean.Meta.WHNF
import Lean.Meta.Transform
import Lean.Meta.DiscrTreeTypes
namespace Lean.Meta.DiscrTree
/-!
(Imperfect) discrimination trees.
We use a hybrid representation.
- A `PersistentHashMap` for the root node which usually contains many children.
- A sorted array of key/node pairs for inner nodes.
The edges are labeled by keys:
- Constant names (and arity). Universe levels are ignored.
- Free variables (and arity). Thus, an entry in the discrimination tree
may reference hypotheses from the local context.
- Literals
- Star/Wildcard. We use them to represent metavariables and terms
we want to ignore. We ignore implicit arguments and proofs.
- Other. We use to represent other kinds of terms (e.g., nested lambda, forall, sort, etc).
We reduce terms using `TransparencyMode.reducible`. Thus, all reducible
definitions in an expression `e` are unfolded before we insert it into the
discrimination tree.
Recall that projections from classes are **NOT** reducible.
For example, the expressions `Add.add α (ringAdd ?α ?s) ?x ?x`
and `Add.add Nat Nat.hasAdd a b` generates paths with the following keys
respectively
```
⟨Add.add, 4⟩, *, *, *, *
⟨Add.add, 4⟩, *, *, ⟨a,0⟩, ⟨b,0⟩
```
That is, we don't reduce `Add.add Nat inst a b` into `Nat.add a b`.
We say the `Add.add` applications are the de-facto canonical forms in
the metaprogramming framework.
Moreover, it is the metaprogrammer's responsibility to re-pack applications such as
`Nat.add a b` into `Add.add Nat inst a b`.
Remark: we store the arity in the keys
1- To be able to implement the "skip" operation when retrieving "candidate"
unifiers.
2- Distinguish partial applications `f a`, `f a b`, and `f a b c`.
-/
def Key.ctorIdx : Key → Nat
| .star => 0
| .other => 1
| .lit .. => 2
| .fvar .. => 3
| .const .. => 4
| .arrow => 5
| .proj .. => 6
def Key.lt : Key → Key → Bool
| .lit v₁, .lit v₂ => v₁ < v₂
| .fvar n₁ a₁, .fvar n₂ a₂ => Name.quickLt n₁.name n₂.name || (n₁ == n₂ && a₁ < a₂)
| .const n₁ a₁, .const n₂ a₂ => Name.quickLt n₁ n₂ || (n₁ == n₂ && a₁ < a₂)
| .proj s₁ i₁ a₁, .proj s₂ i₂ a₂ => Name.quickLt s₁ s₂ || (s₁ == s₂ && i₁ < i₂) || (s₁ == s₂ && i₁ == i₂ && a₁ < a₂)
| k₁, k₂ => k₁.ctorIdx < k₂.ctorIdx
instance : LT Key := ⟨fun a b => Key.lt a b⟩
instance (a b : Key) : Decidable (a < b) := inferInstanceAs (Decidable (Key.lt a b))
def Key.format : Key → Format
| .star => "*"
| .other => "◾"
| .lit (Literal.natVal v) => Std.format v
| .lit (Literal.strVal v) => repr v
| .const k _ => Std.format k
| .proj s i _ => Std.format s ++ "." ++ Std.format i
| .fvar k _ => Std.format k.name
| .arrow => "→"
instance : ToFormat Key := ⟨Key.format⟩
def Key.arity : Key → Nat
| .const _ a => a
| .fvar _ a => a
| .arrow => 2
| .proj _ _ a => 1 + a
| _ => 0
instance : Inhabited (Trie α) := ⟨.node #[] #[]⟩
def empty : DiscrTree α := { root := {} }
partial def Trie.format [ToFormat α] : Trie α → Format
| .node vs cs => Format.group $ Format.paren $
"node" ++ (if vs.isEmpty then Format.nil else " " ++ Std.format vs)
++ Format.join (cs.toList.map fun ⟨k, c⟩ => Format.line ++ Format.paren (Std.format k ++ " => " ++ format c))
instance [ToFormat α] : ToFormat (Trie α) := ⟨Trie.format⟩
partial def format [ToFormat α] (d : DiscrTree α) : Format :=
let (_, r) := d.root.foldl
(fun (p : Bool × Format) k c =>
(false, p.2 ++ (if p.1 then Format.nil else Format.line) ++ Format.paren (Std.format k ++ " => " ++ Std.format c)))
(true, Format.nil)
Format.group r
instance [ToFormat α] : ToFormat (DiscrTree α) := ⟨format⟩
/-- The discrimination tree ignores implicit arguments and proofs.
We use the following auxiliary id as a "mark". -/
private def tmpMVarId : MVarId := { name := `_discr_tree_tmp }
private def tmpStar := mkMVar tmpMVarId
instance : Inhabited (DiscrTree α) where
default := {}
/--
Return true iff the argument should be treated as a "wildcard" by the discrimination tree.
- We ignore proofs because of proof irrelevance. It doesn't make sense to try to
index their structure.
- We ignore instance implicit arguments (e.g., `[Add α]`) because they are "morally" canonical.
Moreover, we may have many definitionally equal terms floating around.
Example: `Ring.hasAdd Int Int.isRing` and `Int.hasAdd`.
- We considered ignoring implicit arguments (e.g., `{α : Type}`) since users don't "see" them,
and may not even understand why some simplification rule is not firing.
However, in type class resolution, we have instance such as `Decidable (@Eq Nat x y)`,
where `Nat` is an implicit argument. Thus, we would add the path
```
Decidable -> Eq -> * -> * -> * -> [Nat.decEq]
```
to the discrimination tree IF we ignored the implicit `Nat` argument.
This would be BAD since **ALL** decidable equality instances would be in the same path.
So, we index implicit arguments if they are types.
This setting seems sensible for simplification theorems such as:
```
forall (x y : Unit), (@Eq Unit x y) = true
```
If we ignore the implicit argument `Unit`, the `DiscrTree` will say it is a candidate
simplification theorem for any equality in our goal.
Remark: if users have problems with the solution above, we may provide a `noIndexing` annotation,
and `ignoreArg` would return true for any term of the form `noIndexing t`.
-/
private def ignoreArg (a : Expr) (i : Nat) (infos : Array ParamInfo) : MetaM Bool := do
if h : i < infos.size then
let info := infos.get ⟨i, h⟩
if info.isInstImplicit then
return true
else if info.isImplicit || info.isStrictImplicit then
return not (← isType a)
else
isProof a
else
isProof a
private partial def pushArgsAux (infos : Array ParamInfo) : Nat → Expr → Array Expr → MetaM (Array Expr)
| i, .app f a, todo => do
if (← ignoreArg a i infos) then
pushArgsAux infos (i-1) f (todo.push tmpStar)
else
pushArgsAux infos (i-1) f (todo.push a)
| _, _, todo => return todo
/--
Return true if `e` is one of the following
- A nat literal (numeral)
- `Nat.zero`
- `Nat.succ x` where `isNumeral x`
- `OfNat.ofNat _ x _` where `isNumeral x` -/
private partial def isNumeral (e : Expr) : Bool :=
if e.isNatLit then true
else
let f := e.getAppFn
if !f.isConst then false
else
let fName := f.constName!
if fName == ``Nat.succ && e.getAppNumArgs == 1 then isNumeral e.appArg!
else if fName == ``OfNat.ofNat && e.getAppNumArgs == 3 then isNumeral (e.getArg! 1)
else if fName == ``Nat.zero && e.getAppNumArgs == 0 then true
else false
private partial def toNatLit? (e : Expr) : Option Literal :=
if isNumeral e then
if let some n := loop e then
some (.natVal n)
else
none
else
none
where
loop (e : Expr) : OptionT Id Nat := do
let f := e.getAppFn
match f with
| .lit (.natVal n) => return n
| .const fName .. =>
if fName == ``Nat.succ && e.getAppNumArgs == 1 then
let r ← loop e.appArg!
return r+1
else if fName == ``OfNat.ofNat && e.getAppNumArgs == 3 then
loop (e.getArg! 1)
else if fName == ``Nat.zero && e.getAppNumArgs == 0 then
return 0
else
failure
| _ => failure
private def isNatType (e : Expr) : MetaM Bool :=
return (← whnf e).isConstOf ``Nat
/--
Return true if `e` is one of the following
- `Nat.add _ k` where `isNumeral k`
- `Add.add Nat _ _ k` where `isNumeral k`
- `HAdd.hAdd _ Nat _ _ k` where `isNumeral k`
- `Nat.succ _`
This function assumes `e.isAppOf fName`
-/
private def isOffset (fName : Name) (e : Expr) : MetaM Bool := do
if fName == ``Nat.add && e.getAppNumArgs == 2 then
return isNumeral e.appArg!
else if fName == ``Add.add && e.getAppNumArgs == 4 then
if (← isNatType (e.getArg! 0)) then return isNumeral e.appArg! else return false
else if fName == ``HAdd.hAdd && e.getAppNumArgs == 6 then
if (← isNatType (e.getArg! 1)) then return isNumeral e.appArg! else return false
else
return fName == ``Nat.succ && e.getAppNumArgs == 1
/--
TODO: add hook for users adding their own functions for controlling `shouldAddAsStar`
Different `DiscrTree` users may populate this set using, for example, attributes.
Remark: we currently tag "offset" terms as star to avoid having to add special
support for offset terms.
Example, suppose the discrimination tree contains the entry
`Nat.succ ?m |-> v`, and we are trying to retrieve the matches for `Expr.lit (Literal.natVal 1) _`.
In this scenario, we want to retrieve `Nat.succ ?m |-> v`
-/
private def shouldAddAsStar (fName : Name) (e : Expr) : MetaM Bool := do
isOffset fName e
def mkNoindexAnnotation (e : Expr) : Expr :=
mkAnnotation `noindex e
def hasNoindexAnnotation (e : Expr) : Bool :=
annotation? `noindex e |>.isSome
/--
Reduction procedure for the discrimination tree indexing.
The parameter `config` controls how aggressively the term is reduced.
The parameter at type `DiscrTree` controls this value.
See comment at `DiscrTree`.
-/
partial def reduce (e : Expr) (config : WhnfCoreConfig) : MetaM Expr := do
let e ← whnfCore e config
match (← unfoldDefinition? e) with
| some e => reduce e config
| none => match e.etaExpandedStrict? with
| some e => reduce e config
| none => return e
/--
Return `true` if `fn` is a "bad" key. That is, `pushArgs` would add `Key.other` or `Key.star`.
We use this function when processing "root terms, and will avoid unfolding terms.
Note that without this trick the pattern `List.map f ∘ List.map g` would be mapped into the key `Key.other`
since the function composition `∘` would be unfolded and we would get `fun x => List.map g (List.map f x)`
-/
private def isBadKey (fn : Expr) : Bool :=
match fn with
| .lit .. => false
| .const .. => false
| .fvar .. => false
| .proj .. => false
| .forallE _ _ b _ => b.hasLooseBVars
| _ => true
/--
Try to eliminate loose bound variables by performing beta-reduction.
We use this method when processing terms in discrimination trees.
These trees distinguish dependent arrows from nondependent ones.
Recall that dependent arrows are indexed as `.other`, but nondependent arrows as `.arrow ..`.
Motivation: we want to "discriminate" implications and simple arrows in our index.
Now suppose we add the term `Foo (Nat → Nat)` to our index. The nested arrow appears as
`.arrow ..`. Then, suppose we want to check whether the index contains
`(x : Nat) → (fun _ => Nat) x`, but it will fail to retrieve `Foo (Nat → Nat)` because
it assumes the nested arrow is a dependent one and uses `.other`.
We use this method to address this issue by beta-reducing terms containing loose bound variables.
See issue #2232.
Remark: we expect the performance impact will be minimal.
-/
private def elimLooseBVarsByBeta (e : Expr) : CoreM Expr :=
Core.transform e
(pre := fun e => do
if !e.hasLooseBVars then
return .done e
else if e.isHeadBetaTarget then
return .visit e.headBeta
else
return .continue)
/--
Reduce `e` until we get an irreducible term (modulo current reducibility setting) or the resulting term
is a bad key (see comment at `isBadKey`).
We use this method instead of `reduce` for root terms at `pushArgs`. -/
private partial def reduceUntilBadKey (e : Expr) (config : WhnfCoreConfig) : MetaM Expr := do
let e ← step e
match e.etaExpandedStrict? with
| some e => reduceUntilBadKey e config
| none => return e
where
step (e : Expr) := do
let e ← whnfCore e config
match (← unfoldDefinition? e) with
| some e' => if isBadKey e'.getAppFn then return e else step e'
| none => return e
/-- whnf for the discrimination tree module -/
def reduceDT (e : Expr) (root : Bool) (config : WhnfCoreConfig) : MetaM Expr :=
if root then reduceUntilBadKey e config else reduce e config
/- Remark: we use `shouldAddAsStar` only for nested terms, and `root == false` for nested terms -/
private def pushArgs (root : Bool) (todo : Array Expr) (e : Expr) (config : WhnfCoreConfig) : MetaM (Key × Array Expr) := do
if hasNoindexAnnotation e then
return (.star, todo)
else
let e ← reduceDT e root config
let fn := e.getAppFn
let push (k : Key) (nargs : Nat) (todo : Array Expr): MetaM (Key × Array Expr) := do
let info ← getFunInfoNArgs fn nargs
let todo ← pushArgsAux info.paramInfo (nargs-1) e todo
return (k, todo)
match fn with
| .lit v =>
return (.lit v, todo)
| .const c _ =>
unless root do
if let some v := toNatLit? e then
return (.lit v, todo)
if (← shouldAddAsStar c e) then
return (.star, todo)
let nargs := e.getAppNumArgs
push (.const c nargs) nargs todo
| .proj s i a =>
/-
If `s` is a class, then `a` is an instance. Thus, we annotate `a` with `no_index` since we do not
index instances. This should only happen if users mark a class projection function as `[reducible]`.
TODO: add better support for projections that are functions
-/
let a := if isClass (← getEnv) s then mkNoindexAnnotation a else a
let nargs := e.getAppNumArgs
push (.proj s i nargs) nargs (todo.push a)
| .fvar fvarId =>
let nargs := e.getAppNumArgs
push (.fvar fvarId nargs) nargs todo
| .mvar mvarId =>
if mvarId == tmpMVarId then
-- We use `tmp to mark implicit arguments and proofs
return (.star, todo)
else if (← mvarId.isReadOnlyOrSyntheticOpaque) then
return (.other, todo)
else
return (.star, todo)
| .forallE _ d b _ =>
-- See comment at elimLooseBVarsByBeta
let b ← if b.hasLooseBVars then elimLooseBVarsByBeta b else pure b
if b.hasLooseBVars then
return (.other, todo)
else
return (.arrow, todo.push d |>.push b)
| _ =>
return (.other, todo)
partial def mkPathAux (root : Bool) (todo : Array Expr) (keys : Array Key) (config : WhnfCoreConfig) : MetaM (Array Key) := do
if todo.isEmpty then
return keys
else
let e := todo.back
let todo := todo.pop
let (k, todo) ← pushArgs root todo e config
mkPathAux false todo (keys.push k) config
private def initCapacity := 8
def mkPath (e : Expr) (config : WhnfCoreConfig) : MetaM (Array Key) := do
withReducible do
let todo : Array Expr := .mkEmpty initCapacity
let keys : Array Key := .mkEmpty initCapacity
mkPathAux (root := true) (todo.push e) keys config
private partial def createNodes (keys : Array Key) (v : α) (i : Nat) : Trie α :=
if h : i < keys.size then
let k := keys.get ⟨i, h⟩
let c := createNodes keys v (i+1)
.node #[] #[(k, c)]
else
.node #[v] #[]
/--
If `vs` contains an element `v'` such that `v == v'`, then replace `v'` with `v`.
Otherwise, push `v`.
See issue #2155
Recall that `BEq α` may not be Lawful.
-/
private def insertVal [BEq α] (vs : Array α) (v : α) : Array α :=
loop 0
where
loop (i : Nat) : Array α :=
if h : i < vs.size then
if v == vs[i] then
vs.set ⟨i,h⟩ v
else
loop (i+1)
else
vs.push v
termination_by loop i => vs.size - i
private partial def insertAux [BEq α] (keys : Array Key) (v : α) (config : WhnfCoreConfig) : Nat → Trie α → Trie α
| i, .node vs cs =>
if h : i < keys.size then
let k := keys.get ⟨i, h⟩
let c := Id.run $ cs.binInsertM
(fun a b => a.1 < b.1)
(fun ⟨_, s⟩ => let c := insertAux keys v config (i+1) s; (k, c)) -- merge with existing
(fun _ => let c := createNodes keys v (i+1); (k, c))
(k, default)
.node vs c
else
.node (insertVal vs v) cs
def insertCore [BEq α] (d : DiscrTree α) (keys : Array Key) (v : α) (config : WhnfCoreConfig) : DiscrTree α :=
if keys.isEmpty then panic! "invalid key sequence"
else
let k := keys[0]!
match d.root.find? k with
| none =>
let c := createNodes keys v 1
{ root := d.root.insert k c }
| some c =>
let c := insertAux keys v config 1 c
{ root := d.root.insert k c }
def insert [BEq α] (d : DiscrTree α) (e : Expr) (v : α) (config : WhnfCoreConfig) : MetaM (DiscrTree α) := do
let keys ← mkPath e config
return d.insertCore keys v config
private def getKeyArgs (e : Expr) (isMatch root : Bool) (config : WhnfCoreConfig) : MetaM (Key × Array Expr) := do
let e ← reduceDT e root config
unless root do
-- See pushArgs
if let some v := toNatLit? e then
return (.lit v, #[])
match e.getAppFn with
| .lit v => return (.lit v, #[])
| .const c _ =>
if (← getConfig).isDefEqStuckEx && e.hasExprMVar then
if (← isReducible c) then
/- `e` is a term `c ...` s.t. `c` is reducible and `e` has metavariables, but it was not unfolded.
This can happen if the metavariables in `e` are "blocking" smart unfolding.
If `isDefEqStuckEx` is enabled, then we must throw the `isDefEqStuck` exception to postpone TC resolution.
Here is an example. Suppose we have
```
inductive Ty where
| bool | fn (a ty : Ty)
@[reducible] def Ty.interp : Ty → Type
| bool => Bool
| fn a b => a.interp → b.interp
```
and we are trying to synthesize `BEq (Ty.interp ?m)`
-/
Meta.throwIsDefEqStuck
else if let some matcherInfo := isMatcherAppCore? (← getEnv) e then
-- A matcher application is stuck is one of the discriminants has a metavariable
let args := e.getAppArgs
for arg in args[matcherInfo.getFirstDiscrPos: matcherInfo.getFirstDiscrPos + matcherInfo.numDiscrs] do
if arg.hasExprMVar then
Meta.throwIsDefEqStuck
else if (← isRec c) then
/- Similar to the previous case, but for `match` and recursor applications. It may be stuck (i.e., did not reduce)
because of metavariables. -/
Meta.throwIsDefEqStuck
let nargs := e.getAppNumArgs
return (.const c nargs, e.getAppRevArgs)
| .fvar fvarId =>
let nargs := e.getAppNumArgs
return (.fvar fvarId nargs, e.getAppRevArgs)
| .mvar mvarId =>
if isMatch then
return (.other, #[])
else do
let ctx ← read
if ctx.config.isDefEqStuckEx then
/-
When the configuration flag `isDefEqStuckEx` is set to true,
we want `isDefEq` to throw an exception whenever it tries to assign
a read-only metavariable.
This feature is useful for type class resolution where
we may want to notify the caller that the TC problem may be solvable
later after it assigns `?m`.
The method `DiscrTree.getUnify e` returns candidates `c` that may "unify" with `e`.
That is, `isDefEq c e` may return true. Now, consider `DiscrTree.getUnify d (Add ?m)`
where `?m` is a read-only metavariable, and the discrimination tree contains the keys
`HadAdd Nat` and `Add Int`. If `isDefEqStuckEx` is set to true, we must treat `?m` as
a regular metavariable here, otherwise we return the empty set of candidates.
This is incorrect because it is equivalent to saying that there is no solution even if
the caller assigns `?m` and try again. -/
return (.star, #[])
else if (← mvarId.isReadOnlyOrSyntheticOpaque) then
return (.other, #[])
else
return (.star, #[])
| .proj s i a .. =>
let nargs := e.getAppNumArgs
return (.proj s i nargs, #[a] ++ e.getAppRevArgs)
| .forallE _ d b _ =>
-- See comment at elimLooseBVarsByBeta
let b ← if b.hasLooseBVars then elimLooseBVarsByBeta b else pure b
if b.hasLooseBVars then
return (.other, #[])
else
return (.arrow, #[d, b])
| _ =>
return (.other, #[])
private abbrev getMatchKeyArgs (e : Expr) (root : Bool) (config : WhnfCoreConfig) : MetaM (Key × Array Expr) :=
getKeyArgs e (isMatch := true) (root := root) (config := config)
private abbrev getUnifyKeyArgs (e : Expr) (root : Bool) (config : WhnfCoreConfig) : MetaM (Key × Array Expr) :=
getKeyArgs e (isMatch := false) (root := root) (config := config)
private def getStarResult (d : DiscrTree α) : Array α :=
let result : Array α := .mkEmpty initCapacity
match d.root.find? .star with
| none => result
| some (.node vs _) => result ++ vs
private abbrev findKey (cs : Array (Key × Trie α)) (k : Key) : Option (Key × Trie α) :=
cs.binSearch (k, default) (fun a b => a.1 < b.1)
private partial def getMatchLoop (todo : Array Expr) (c : Trie α) (result : Array α) (config : WhnfCoreConfig) : MetaM (Array α) := do
match c with
| .node vs cs =>
if todo.isEmpty then
return result ++ vs
else if cs.isEmpty then
return result
else
let e := todo.back
let todo := todo.pop
let first := cs[0]! /- Recall that `Key.star` is the minimal key -/
let (k, args) ← getMatchKeyArgs e (root := false) config
/- We must always visit `Key.star` edges since they are wildcards.
Thus, `todo` is not used linearly when there is `Key.star` edge
and there is an edge for `k` and `k != Key.star`. -/
let visitStar (result : Array α) : MetaM (Array α) :=
if first.1 == .star then
getMatchLoop todo first.2 result config
else
return result
let visitNonStar (k : Key) (args : Array Expr) (result : Array α) : MetaM (Array α) :=
match findKey cs k with
| none => return result
| some c => getMatchLoop (todo ++ args) c.2 result config
let result ← visitStar result
match k with
| .star => return result
/-
Note: dep-arrow vs arrow
Recall that dependent arrows are `(Key.other, #[])`, and non-dependent arrows are `(Key.arrow, #[a, b])`.
A non-dependent arrow may be an instance of a dependent arrow (stored at `DiscrTree`). Thus, we also visit the `Key.other` child.
-/
| .arrow => visitNonStar .other #[] (← visitNonStar k args result)
| _ => visitNonStar k args result
private def getMatchRoot (d : DiscrTree α) (k : Key) (args : Array Expr) (result : Array α) (config : WhnfCoreConfig) : MetaM (Array α) :=
match d.root.find? k with
| none => return result
| some c => getMatchLoop args c result config
private def getMatchCore (d : DiscrTree α) (e : Expr) (config : WhnfCoreConfig) : MetaM (Key × Array α) :=
withReducible do
let result := getStarResult d
let (k, args) ← getMatchKeyArgs e (root := true) config
match k with
| .star => return (k, result)
/- See note about "dep-arrow vs arrow" at `getMatchLoop` -/
| .arrow => return (k, (← getMatchRoot d k args (← getMatchRoot d .other #[] result config) config))
| _ => return (k, (← getMatchRoot d k args result config))
/--
Find values that match `e` in `d`.
-/
def getMatch (d : DiscrTree α) (e : Expr) (config : WhnfCoreConfig) : MetaM (Array α) :=
return (← getMatchCore d e config).2
/--
Similar to `getMatch`, but returns solutions that are prefixes of `e`.
We store the number of ignored arguments in the result.-/
partial def getMatchWithExtra (d : DiscrTree α) (e : Expr) (config : WhnfCoreConfig) : MetaM (Array (α × Nat)) := do
let (k, result) ← getMatchCore d e config
let result := result.map (·, 0)
if !e.isApp then
return result
else if !(← mayMatchPrefix k) then
return result
else
go e.appFn! 1 result
where
mayMatchPrefix (k : Key) : MetaM Bool :=
let cont (k : Key) : MetaM Bool :=
if d.root.find? k |>.isSome then
return true
else
mayMatchPrefix k
match k with
| .const f (n+1) => cont (.const f n)
| .fvar f (n+1) => cont (.fvar f n)
| .proj s i (n+1) => cont (.proj s i n)
| _ => return false
go (e : Expr) (numExtra : Nat) (result : Array (α × Nat)) : MetaM (Array (α × Nat)) := do
let result := result ++ (← getMatchCore d e config).2.map (., numExtra)
if e.isApp then
go e.appFn! (numExtra + 1) result
else
return result
partial def getUnify (d : DiscrTree α) (e : Expr) (config : WhnfCoreConfig) : MetaM (Array α) :=
withReducible do
let (k, args) ← getUnifyKeyArgs e (root := true) config
match k with
| .star => d.root.foldlM (init := #[]) fun result k c => process k.arity #[] c result
| _ =>
let result := getStarResult d
match d.root.find? k with
| none => return result
| some c => process 0 args c result
where
process (skip : Nat) (todo : Array Expr) (c : Trie α) (result : Array α) : MetaM (Array α) := do
match skip, c with
| skip+1, .node _ cs =>
if cs.isEmpty then
return result
else
cs.foldlM (init := result) fun result ⟨k, c⟩ => process (skip + k.arity) todo c result
| 0, .node vs cs => do
if todo.isEmpty then
return result ++ vs
else if cs.isEmpty then
return result
else
let e := todo.back
let todo := todo.pop
let (k, args) ← getUnifyKeyArgs e (root := false) config
let visitStar (result : Array α) : MetaM (Array α) :=
let first := cs[0]!
if first.1 == .star then
process 0 todo first.2 result
else
return result
let visitNonStar (k : Key) (args : Array Expr) (result : Array α) : MetaM (Array α) :=
match findKey cs k with
| none => return result
| some c => process 0 (todo ++ args) c.2 result
match k with
| .star => cs.foldlM (init := result) fun result ⟨k, c⟩ => process k.arity todo c result
-- See comment a `getMatch` regarding non-dependent arrows vs dependent arrows
| .arrow => visitNonStar .other #[] (← visitNonStar k args (← visitStar result))
| _ => visitNonStar k args (← visitStar result)
end Lean.Meta.DiscrTree