forked from leanprover/lean4
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBasic.lean
1719 lines (1464 loc) · 72.5 KB
/
Basic.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/-
Copyright (c) 2019 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
import Lean.Data.LOption
import Lean.Environment
import Lean.Class
import Lean.ReducibilityAttrs
import Lean.Util.ReplaceExpr
import Lean.Util.MonadBacktrack
import Lean.Compiler.InlineAttrs
import Lean.Meta.TransparencyMode
/-!
This module provides four (mutually dependent) goodies that are needed for building the elaborator and tactic frameworks.
1- Weak head normal form computation with support for metavariables and transparency modes.
2- Definitionally equality checking with support for metavariables (aka unification modulo definitional equality).
3- Type inference.
4- Type class resolution.
They are packed into the MetaM monad.
-/
namespace Lean.Meta
builtin_initialize isDefEqStuckExceptionId : InternalExceptionId ← registerInternalExceptionId `isDefEqStuck
/--
Configuration flags for the `MetaM` monad.
Many of them are used to control the `isDefEq` function that checks whether two terms are definitionally equal or not.
Recall that when `isDefEq` is trying to check whether
`?m@C a₁ ... aₙ` and `t` are definitionally equal (`?m@C a₁ ... aₙ =?= t`), where
`?m@C` as a shorthand for `C |- ?m : t` where `t` is the type of `?m`.
We solve it using the assignment `?m := fun a₁ ... aₙ => t` if
1) `a₁ ... aₙ` are pairwise distinct free variables that are *not* let-variables.
2) `a₁ ... aₙ` are not in `C`
3) `t` only contains free variables in `C` and/or `{a₁, ..., aₙ}`
4) For every metavariable `?m'@C'` occurring in `t`, `C'` is a subprefix of `C`
5) `?m` does not occur in `t`
-/
structure Config where
/--
If `foApprox` is set to true, and some `aᵢ` is not a free variable,
then we use first-order unification
```
?m a_1 ... a_i a_{i+1} ... a_{i+k} =?= f b_1 ... b_k
```
reduces to
```
?m a_1 ... a_i =?= f
a_{i+1} =?= b_1
...
a_{i+k} =?= b_k
```
-/
foApprox : Bool := false
/--
When `ctxApprox` is set to true, we relax condition 4, by creating an
auxiliary metavariable `?n'` with a smaller context than `?m'`.
-/
ctxApprox : Bool := false
/--
When `quasiPatternApprox` is set to true, we ignore condition 2.
-/
quasiPatternApprox : Bool := false
/-- When `constApprox` is set to true,
we solve `?m t =?= c` using
`?m := fun _ => c`
when `?m t` is not a higher-order pattern and `c` is not an application as -/
constApprox : Bool := false
/--
When the following flag is set,
`isDefEq` throws the exception `Exeption.isDefEqStuck`
whenever it encounters a constraint `?m ... =?= t` where
`?m` is read only.
This feature is useful for type class resolution where
we may want to notify the caller that the TC problem may be solvable
later after it assigns `?m`. -/
isDefEqStuckEx : Bool := false
/-- Enable/disable the unification hints feature. -/
unificationHints : Bool := true
/-- Enables proof irrelevance at `isDefEq` -/
proofIrrelevance : Bool := true
/-- By default synthetic opaque metavariables are not assigned by `isDefEq`. Motivation: we want to make
sure typing constraints resolved during elaboration should not "fill" holes that are supposed to be filled using tactics.
However, this restriction is too restrictive for tactics such as `exact t`. When elaborating `t`, we dot not fill
named holes when solving typing constraints or TC resolution. But, we ignore the restriction when we try to unify
the type of `t` with the goal target type. We claim this is not a hack and is defensible behavior because
this last unification step is not really part of the term elaboration. -/
assignSyntheticOpaque : Bool := false
/-- Enable/Disable support for offset constraints such as `?x + 1 =?= e` -/
offsetCnstrs : Bool := true
/--
Controls which definitions and theorems can be unfolded by `isDefEq` and `whnf`.
-/
transparency : TransparencyMode := TransparencyMode.default
/--
When `trackZeta = true`, we track all free variables that have been zeta-expanded.
That is, suppose the local context contains
the declaration `x : t := v`, and we reduce `x` to `v`, then we insert `x` into `State.zetaFVarIds`.
We use `trackZeta` to discover which let-declarations `let x := v; e` can be represented as `(fun x => e) v`.
When we find these declarations we set their `nonDep` flag with `true`.
To find these let-declarations in a given term `s`, we
1- Reset `State.zetaFVarIds`
2- Set `trackZeta := true`
3- Type-check `s`.
-/
trackZeta : Bool := false
/-- Eta for structures configuration mode. -/
etaStruct : EtaStructMode := .all
/--
Function parameter information cache.
-/
structure ParamInfo where
/-- The binder annotation for the parameter. -/
binderInfo : BinderInfo := BinderInfo.default
/-- `hasFwdDeps` is true if there is another parameter whose type depends on this one. -/
hasFwdDeps : Bool := false
/-- `backDeps` contains the backwards dependencies. That is, the (0-indexed) position of previous parameters that this one depends on. -/
backDeps : Array Nat := #[]
/-- `isProp` is true if the parameter is always a proposition. -/
isProp : Bool := false
/--
`isDecInst` is true if the parameter's type is of the form `Decidable ...`.
This information affects the generation of congruence theorems.
-/
isDecInst : Bool := false
/--
`higherOrderOutParam` is true if this parameter is a higher-order output parameter
of local instance.
Example:
```
getElem :
{cont : Type u_1} → {idx : Type u_2} → {elem : Type u_3} →
{dom : cont → idx → Prop} → [self : GetElem cont idx elem dom] →
(xs : cont) → (i : idx) → dom xs i → elem
```
This flag is true for the parameter `dom` because it is output parameter of
`[self : GetElem cont idx elem dom]`
-/
higherOrderOutParam : Bool := false
/--
`dependsOnHigherOrderOutParam` is true if the type of this parameter depends on
the higher-order output parameter of a previous local instance.
Example:
```
getElem :
{cont : Type u_1} → {idx : Type u_2} → {elem : Type u_3} →
{dom : cont → idx → Prop} → [self : GetElem cont idx elem dom] →
(xs : cont) → (i : idx) → dom xs i → elem
```
This flag is true for the parameter with type `dom xs i` since `dom` is an output parameter
of the instance `[self : GetElem cont idx elem dom]`
-/
dependsOnHigherOrderOutParam : Bool := false
deriving Inhabited
def ParamInfo.isImplicit (p : ParamInfo) : Bool :=
p.binderInfo == BinderInfo.implicit
def ParamInfo.isInstImplicit (p : ParamInfo) : Bool :=
p.binderInfo == BinderInfo.instImplicit
def ParamInfo.isStrictImplicit (p : ParamInfo) : Bool :=
p.binderInfo == BinderInfo.strictImplicit
def ParamInfo.isExplicit (p : ParamInfo) : Bool :=
p.binderInfo == BinderInfo.default
/--
Function information cache. See `ParamInfo`.
-/
structure FunInfo where
/-- Parameter information cache. -/
paramInfo : Array ParamInfo := #[]
/--
`resultDeps` contains the function result type backwards dependencies.
That is, the (0-indexed) position of parameters that the result type depends on.
-/
resultDeps : Array Nat := #[]
/--
Key for the function information cache.
-/
structure InfoCacheKey where
/-- The transparency mode used to compute the `FunInfo`. -/
transparency : TransparencyMode
/-- The function being cached information about. It is quite often an `Expr.const`. -/
expr : Expr
/--
`nargs? = some n` if the cached information was computed assuming the function has arity `n`.
If `nargs? = none`, then the cache information consumed the arrow type as much as possible
using the current transparency setting.
X-/
nargs? : Option Nat
deriving Inhabited, BEq
namespace InfoCacheKey
instance : Hashable InfoCacheKey :=
⟨fun ⟨transparency, expr, nargs⟩ => mixHash (hash transparency) <| mixHash (hash expr) (hash nargs)⟩
end InfoCacheKey
abbrev SynthInstanceCache := PersistentHashMap (LocalInstances × Expr) (Option Expr)
abbrev InferTypeCache := PersistentExprStructMap Expr
abbrev FunInfoCache := PersistentHashMap InfoCacheKey FunInfo
abbrev WhnfCache := PersistentExprStructMap Expr
/--
A mapping `(s, t) ↦ isDefEq s t` per transparency level.
TODO: consider more efficient representations (e.g., a proper set) and caching policies (e.g., imperfect cache).
We should also investigate the impact on memory consumption. -/
structure DefEqCache where
reducible : PersistentHashMap (Expr × Expr) Bool := {}
instances : PersistentHashMap (Expr × Expr) Bool := {}
default : PersistentHashMap (Expr × Expr) Bool := {}
all : PersistentHashMap (Expr × Expr) Bool := {}
deriving Inhabited
/--
Cache datastructures for type inference, type class resolution, whnf, and definitional equality.
-/
structure Cache where
inferType : InferTypeCache := {}
funInfo : FunInfoCache := {}
synthInstance : SynthInstanceCache := {}
whnfDefault : WhnfCache := {} -- cache for closed terms and `TransparencyMode.default`
whnfAll : WhnfCache := {} -- cache for closed terms and `TransparencyMode.all`
defEqTrans : DefEqCache := {} -- transient cache for terms containing mvars or using nonstandard configuration options, it is frequently reset.
defEqPerm : DefEqCache := {} -- permanent cache for terms not containing mvars and using standard configuration options
deriving Inhabited
/--
"Context" for a postponed universe constraint.
`lhs` and `rhs` are the surrounding `isDefEq` call when the postponed constraint was created.
-/
structure DefEqContext where
lhs : Expr
rhs : Expr
lctx : LocalContext
localInstances : LocalInstances
/--
Auxiliary structure for representing postponed universe constraints.
Remark: the fields `ref` and `rootDefEq?` are used for error message generation only.
Remark: we may consider improving the error message generation in the future.
-/
structure PostponedEntry where
/-- We save the `ref` at entry creation time. This is used for reporting errors back to the user. -/
ref : Syntax
lhs : Level
rhs : Level
/-- Context for the surrounding `isDefEq` call when entry was created. -/
ctx? : Option DefEqContext
deriving Inhabited
/--
`MetaM` monad state.
-/
structure State where
mctx : MetavarContext := {}
cache : Cache := {}
/-- When `trackZeta == true`, then any let-decl free variable that is zeta expansion performed by `MetaM` is stored in `zetaFVarIds`. -/
zetaFVarIds : FVarIdSet := {}
/-- Array of postponed universe level constraints -/
postponed : PersistentArray PostponedEntry := {}
deriving Inhabited
/--
Backtrackable state for the `MetaM` monad.
-/
structure SavedState where
core : Core.State
meta : State
deriving Nonempty
/--
Contextual information for the `MetaM` monad.
-/
structure Context where
config : Config := {}
/-- Local context -/
lctx : LocalContext := {}
/-- Local instances in `lctx`. -/
localInstances : LocalInstances := #[]
/-- Not `none` when inside of an `isDefEq` test. See `PostponedEntry`. -/
defEqCtx? : Option DefEqContext := none
/--
Track the number of nested `synthPending` invocations. Nested invocations can happen
when the type class resolution invokes `synthPending`.
Remark: in the current implementation, `synthPending` fails if `synthPendingDepth > 0`.
We will add a configuration option if necessary. -/
synthPendingDepth : Nat := 0
/--
A predicate to control whether a constant can be unfolded or not at `whnf`.
Note that we do not cache results at `whnf` when `canUnfold?` is not `none`. -/
canUnfold? : Option (Config → ConstantInfo → CoreM Bool) := none
abbrev MetaM := ReaderT Context $ StateRefT State CoreM
-- Make the compiler generate specialized `pure`/`bind` so we do not have to optimize through the
-- whole monad stack at every use site. May eventually be covered by `deriving`.
@[always_inline]
instance : Monad MetaM := let i := inferInstanceAs (Monad MetaM); { pure := i.pure, bind := i.bind }
instance : Inhabited (MetaM α) where
default := fun _ _ => default
instance : MonadLCtx MetaM where
getLCtx := return (← read).lctx
instance : MonadMCtx MetaM where
getMCtx := return (← get).mctx
modifyMCtx f := modify fun s => { s with mctx := f s.mctx }
instance : MonadEnv MetaM where
getEnv := return (← getThe Core.State).env
modifyEnv f := do modifyThe Core.State fun s => { s with env := f s.env, cache := {} }; modify fun s => { s with cache := {} }
instance : AddMessageContext MetaM where
addMessageContext := addMessageContextFull
protected def saveState : MetaM SavedState :=
return { core := (← getThe Core.State), meta := (← get) }
/-- Restore backtrackable parts of the state. -/
def SavedState.restore (b : SavedState) : MetaM Unit := do
Core.restore b.core
modify fun s => { s with mctx := b.meta.mctx, zetaFVarIds := b.meta.zetaFVarIds, postponed := b.meta.postponed }
instance : MonadBacktrack SavedState MetaM where
saveState := Meta.saveState
restoreState s := s.restore
@[inline] def MetaM.run (x : MetaM α) (ctx : Context := {}) (s : State := {}) : CoreM (α × State) :=
x ctx |>.run s
@[inline] def MetaM.run' (x : MetaM α) (ctx : Context := {}) (s : State := {}) : CoreM α :=
Prod.fst <$> x.run ctx s
@[inline] def MetaM.toIO (x : MetaM α) (ctxCore : Core.Context) (sCore : Core.State) (ctx : Context := {}) (s : State := {}) : IO (α × Core.State × State) := do
let ((a, s), sCore) ← (x.run ctx s).toIO ctxCore sCore
pure (a, sCore, s)
instance [MetaEval α] : MetaEval (MetaM α) :=
⟨fun env opts x _ => MetaEval.eval env opts x.run' true⟩
protected def throwIsDefEqStuck : MetaM α :=
throw <| Exception.internal isDefEqStuckExceptionId
builtin_initialize
registerTraceClass `Meta
registerTraceClass `Meta.debug
export Core (instantiateTypeLevelParams instantiateValueLevelParams)
@[inline] def liftMetaM [MonadLiftT MetaM m] (x : MetaM α) : m α :=
liftM x
@[inline] def mapMetaM [MonadControlT MetaM m] [Monad m] (f : forall {α}, MetaM α → MetaM α) {α} (x : m α) : m α :=
controlAt MetaM fun runInBase => f <| runInBase x
@[inline] def map1MetaM [MonadControlT MetaM m] [Monad m] (f : forall {α}, (β → MetaM α) → MetaM α) {α} (k : β → m α) : m α :=
controlAt MetaM fun runInBase => f fun b => runInBase <| k b
@[inline] def map2MetaM [MonadControlT MetaM m] [Monad m] (f : forall {α}, (β → γ → MetaM α) → MetaM α) {α} (k : β → γ → m α) : m α :=
controlAt MetaM fun runInBase => f fun b c => runInBase <| k b c
section Methods
variable [MonadControlT MetaM n] [Monad n]
@[inline] def modifyCache (f : Cache → Cache) : MetaM Unit :=
modify fun { mctx, cache, zetaFVarIds, postponed } => { mctx, cache := f cache, zetaFVarIds, postponed }
@[inline] def modifyInferTypeCache (f : InferTypeCache → InferTypeCache) : MetaM Unit :=
modifyCache fun ⟨ic, c1, c2, c3, c4, c5, c6⟩ => ⟨f ic, c1, c2, c3, c4, c5, c6⟩
@[inline] def modifyDefEqTransientCache (f : DefEqCache → DefEqCache) : MetaM Unit :=
modifyCache fun ⟨c1, c2, c3, c4, c5, defeqTrans, c6⟩ => ⟨c1, c2, c3, c4, c5, f defeqTrans, c6⟩
@[inline] def modifyDefEqPermCache (f : DefEqCache → DefEqCache) : MetaM Unit :=
modifyCache fun ⟨c1, c2, c3, c4, c5, c6, defeqPerm⟩ => ⟨c1, c2, c3, c4, c5, c6, f defeqPerm⟩
@[inline] def resetDefEqPermCaches : MetaM Unit :=
modifyDefEqPermCache fun _ => {}
def getLocalInstances : MetaM LocalInstances :=
return (← read).localInstances
def getConfig : MetaM Config :=
return (← read).config
def resetZetaFVarIds : MetaM Unit :=
modify fun s => { s with zetaFVarIds := {} }
def getZetaFVarIds : MetaM FVarIdSet :=
return (← get).zetaFVarIds
/-- Return the array of postponed universe level constraints. -/
def getPostponed : MetaM (PersistentArray PostponedEntry) :=
return (← get).postponed
/-- Set the array of postponed universe level constraints. -/
def setPostponed (postponed : PersistentArray PostponedEntry) : MetaM Unit :=
modify fun s => { s with postponed := postponed }
/-- Modify the array of postponed universe level constraints. -/
@[inline] def modifyPostponed (f : PersistentArray PostponedEntry → PersistentArray PostponedEntry) : MetaM Unit :=
modify fun s => { s with postponed := f s.postponed }
/--
`useEtaStruct inductName` return `true` if we eta for structures is enabled for
for the inductive datatype `inductName`.
Recall we have three different settings: `.none` (never use it), `.all` (always use it), `.notClasses`
(enabled only for structure-like inductive types that are not classes).
The parameter `inductName` affects the result only if the current setting is `.notClasses`.
-/
def useEtaStruct (inductName : Name) : MetaM Bool := do
match (← getConfig).etaStruct with
| .none => return false
| .all => return true
| .notClasses => return !isClass (← getEnv) inductName
/-! WARNING: The following 4 constants are a hack for simulating forward declarations.
They are defined later using the `export` attribute. This is hackish because we
have to hard-code the true arity of these definitions here, and make sure the C names match.
We have used another hack based on `IO.Ref`s in the past, it was safer but less efficient. -/
/-- Reduces an expression to its Weak Head Normal Form.
This is when the topmost expression has been fully reduced,
but may contain subexpressions which have not been reduced. -/
@[extern 6 "lean_whnf"] opaque whnf : Expr → MetaM Expr
/-- Returns the inferred type of the given expression, or fails if it is not type-correct. -/
@[extern 6 "lean_infer_type"] opaque inferType : Expr → MetaM Expr
@[extern 7 "lean_is_expr_def_eq"] opaque isExprDefEqAux : Expr → Expr → MetaM Bool
@[extern 7 "lean_is_level_def_eq"] opaque isLevelDefEqAux : Level → Level → MetaM Bool
@[extern 6 "lean_synth_pending"] protected opaque synthPending : MVarId → MetaM Bool
def whnfForall (e : Expr) : MetaM Expr := do
let e' ← whnf e
if e'.isForall then pure e' else pure e
-- withIncRecDepth for a monad `n` such that `[MonadControlT MetaM n]`
protected def withIncRecDepth (x : n α) : n α :=
mapMetaM (withIncRecDepth (m := MetaM)) x
private def mkFreshExprMVarAtCore
(mvarId : MVarId) (lctx : LocalContext) (localInsts : LocalInstances) (type : Expr) (kind : MetavarKind) (userName : Name) (numScopeArgs : Nat) : MetaM Expr := do
modifyMCtx fun mctx => mctx.addExprMVarDecl mvarId userName lctx localInsts type kind numScopeArgs;
return mkMVar mvarId
def mkFreshExprMVarAt
(lctx : LocalContext) (localInsts : LocalInstances) (type : Expr)
(kind : MetavarKind := MetavarKind.natural) (userName : Name := Name.anonymous) (numScopeArgs : Nat := 0)
: MetaM Expr := do
mkFreshExprMVarAtCore (← mkFreshMVarId) lctx localInsts type kind userName numScopeArgs
def mkFreshLevelMVar : MetaM Level := do
let mvarId ← mkFreshLMVarId
modifyMCtx fun mctx => mctx.addLevelMVarDecl mvarId;
return mkLevelMVar mvarId
private def mkFreshExprMVarCore (type : Expr) (kind : MetavarKind) (userName : Name) : MetaM Expr := do
mkFreshExprMVarAt (← getLCtx) (← getLocalInstances) type kind userName
private def mkFreshExprMVarImpl (type? : Option Expr) (kind : MetavarKind) (userName : Name) : MetaM Expr :=
match type? with
| some type => mkFreshExprMVarCore type kind userName
| none => do
let u ← mkFreshLevelMVar
let type ← mkFreshExprMVarCore (mkSort u) MetavarKind.natural Name.anonymous
mkFreshExprMVarCore type kind userName
def mkFreshExprMVar (type? : Option Expr) (kind := MetavarKind.natural) (userName := Name.anonymous) : MetaM Expr :=
mkFreshExprMVarImpl type? kind userName
def mkFreshTypeMVar (kind := MetavarKind.natural) (userName := Name.anonymous) : MetaM Expr := do
let u ← mkFreshLevelMVar
mkFreshExprMVar (mkSort u) kind userName
/-- Low-level version of `MkFreshExprMVar` which allows users to create/reserve a `mvarId` using `mkFreshId`, and then later create
the metavar using this method. -/
private def mkFreshExprMVarWithIdCore (mvarId : MVarId) (type : Expr)
(kind : MetavarKind := MetavarKind.natural) (userName : Name := Name.anonymous) (numScopeArgs : Nat := 0)
: MetaM Expr := do
mkFreshExprMVarAtCore mvarId (← getLCtx) (← getLocalInstances) type kind userName numScopeArgs
def mkFreshExprMVarWithId (mvarId : MVarId) (type? : Option Expr := none) (kind : MetavarKind := MetavarKind.natural) (userName := Name.anonymous) : MetaM Expr :=
match type? with
| some type => mkFreshExprMVarWithIdCore mvarId type kind userName
| none => do
let u ← mkFreshLevelMVar
let type ← mkFreshExprMVar (mkSort u)
mkFreshExprMVarWithIdCore mvarId type kind userName
def mkFreshLevelMVars (num : Nat) : MetaM (List Level) :=
num.foldM (init := []) fun _ us =>
return (← mkFreshLevelMVar)::us
def mkFreshLevelMVarsFor (info : ConstantInfo) : MetaM (List Level) :=
mkFreshLevelMVars info.numLevelParams
/--
Create a constant with the given name and new universe metavariables.
Example: ``mkConstWithFreshMVarLevels `Monad`` returns `@Monad.{?u, ?v}`
-/
def mkConstWithFreshMVarLevels (declName : Name) : MetaM Expr := do
let info ← getConstInfo declName
return mkConst declName (← mkFreshLevelMVarsFor info)
/-- Return current transparency setting/mode. -/
def getTransparency : MetaM TransparencyMode :=
return (← getConfig).transparency
def shouldReduceAll : MetaM Bool :=
return (← getTransparency) == TransparencyMode.all
def shouldReduceReducibleOnly : MetaM Bool :=
return (← getTransparency) == TransparencyMode.reducible
/--
Return `some mvarDecl` where `mvarDecl` is `mvarId` declaration in the current metavariable context.
Return `none` if `mvarId` has no declaration in the current metavariable context.
-/
def _root_.Lean.MVarId.findDecl? (mvarId : MVarId) : MetaM (Option MetavarDecl) :=
return (← getMCtx).findDecl? mvarId
@[deprecated MVarId.findDecl?]
def findMVarDecl? (mvarId : MVarId) : MetaM (Option MetavarDecl) :=
mvarId.findDecl?
/--
Return `mvarId` declaration in the current metavariable context.
Throw an exception if `mvarId` is not declared in the current metavariable context.
-/
def _root_.Lean.MVarId.getDecl (mvarId : MVarId) : MetaM MetavarDecl := do
match (← mvarId.findDecl?) with
| some d => pure d
| none => throwError "unknown metavariable '?{mvarId.name}'"
@[deprecated MVarId.getDecl]
def getMVarDecl (mvarId : MVarId) : MetaM MetavarDecl := do
mvarId.getDecl
/--
Return `mvarId` kind. Throw an exception if `mvarId` is not declared in the current metavariable context.
-/
def _root_.Lean.MVarId.getKind (mvarId : MVarId) : MetaM MetavarKind :=
return (← mvarId.getDecl).kind
@[deprecated MVarId.getKind]
def getMVarDeclKind (mvarId : MVarId) : MetaM MetavarKind :=
mvarId.getKind
/-- Return `true` if `e` is a synthetic (or synthetic opaque) metavariable -/
def isSyntheticMVar (e : Expr) : MetaM Bool := do
if e.isMVar then
return (← e.mvarId!.getKind) matches .synthetic | .syntheticOpaque
else
return false
/--
Set `mvarId` kind in the current metavariable context.
-/
def _root_.Lean.MVarId.setKind (mvarId : MVarId) (kind : MetavarKind) : MetaM Unit :=
modifyMCtx fun mctx => mctx.setMVarKind mvarId kind
@[deprecated MVarId.setKind]
def setMVarKind (mvarId : MVarId) (kind : MetavarKind) : MetaM Unit :=
mvarId.setKind kind
/-- Update the type of the given metavariable. This function assumes the new type is
definitionally equal to the current one -/
def _root_.Lean.MVarId.setType (mvarId : MVarId) (type : Expr) : MetaM Unit := do
modifyMCtx fun mctx => mctx.setMVarType mvarId type
@[deprecated MVarId.setType]
def setMVarType (mvarId : MVarId) (type : Expr) : MetaM Unit := do
mvarId.setType type
/--
Return true if the given metavariable is "read-only".
That is, its `depth` is different from the current metavariable context depth.
-/
def _root_.Lean.MVarId.isReadOnly (mvarId : MVarId) : MetaM Bool := do
return (← mvarId.getDecl).depth != (← getMCtx).depth
@[deprecated MVarId.isReadOnly]
def isReadOnlyExprMVar (mvarId : MVarId) : MetaM Bool := do
mvarId.isReadOnly
/--
Return true if `mvarId.isReadOnly` return true or if `mvarId` is a synthetic opaque metavariable.
Recall `isDefEq` will not assign a value to `mvarId` if `mvarId.isReadOnlyOrSyntheticOpaque`.
-/
def _root_.Lean.MVarId.isReadOnlyOrSyntheticOpaque (mvarId : MVarId) : MetaM Bool := do
let mvarDecl ← mvarId.getDecl
match mvarDecl.kind with
| MetavarKind.syntheticOpaque => return !(← getConfig).assignSyntheticOpaque
| _ => return mvarDecl.depth != (← getMCtx).depth
@[deprecated MVarId.isReadOnlyOrSyntheticOpaque]
def isReadOnlyOrSyntheticOpaqueExprMVar (mvarId : MVarId) : MetaM Bool := do
mvarId.isReadOnlyOrSyntheticOpaque
/--
Return the level of the given universe level metavariable.
-/
def _root_.Lean.LMVarId.getLevel (mvarId : LMVarId) : MetaM Nat := do
match (← getMCtx).findLevelDepth? mvarId with
| some depth => return depth
| _ => throwError "unknown universe metavariable '?{mvarId.name}'"
@[deprecated LMVarId.getLevel]
def getLevelMVarDepth (mvarId : LMVarId) : MetaM Nat :=
mvarId.getLevel
/--
Return true if the given universe metavariable is "read-only".
That is, its `depth` is different from the current metavariable context depth.
-/
def _root_.Lean.LMVarId.isReadOnly (mvarId : LMVarId) : MetaM Bool :=
return (← mvarId.getLevel) < (← getMCtx).levelAssignDepth
@[deprecated LMVarId.isReadOnly]
def isReadOnlyLevelMVar (mvarId : LMVarId) : MetaM Bool := do
mvarId.isReadOnly
/--
Set the user-facing name for the given metavariable.
-/
def _root_.Lean.MVarId.setUserName (mvarId : MVarId) (newUserName : Name) : MetaM Unit :=
modifyMCtx fun mctx => mctx.setMVarUserName mvarId newUserName
@[deprecated MVarId.setUserName]
def setMVarUserName (mvarId : MVarId) (userNameNew : Name) : MetaM Unit :=
mvarId.setUserName userNameNew
/--
Throw an exception saying `fvarId` is not declared in the current local context.
-/
def _root_.Lean.FVarId.throwUnknown (fvarId : FVarId) : CoreM α :=
throwError "unknown free variable '{mkFVar fvarId}'"
@[deprecated FVarId.throwUnknown]
def throwUnknownFVar (fvarId : FVarId) : MetaM α :=
fvarId.throwUnknown
/--
Return `some decl` if `fvarId` is declared in the current local context.
-/
def _root_.Lean.FVarId.findDecl? (fvarId : FVarId) : MetaM (Option LocalDecl) :=
return (← getLCtx).find? fvarId
@[deprecated FVarId.findDecl?]
def findLocalDecl? (fvarId : FVarId) : MetaM (Option LocalDecl) :=
fvarId.findDecl?
/--
Return the local declaration for the given free variable.
Throw an exception if local declaration is not in the current local context.
-/
def _root_.Lean.FVarId.getDecl (fvarId : FVarId) : MetaM LocalDecl := do
match (← getLCtx).find? fvarId with
| some d => return d
| none => fvarId.throwUnknown
@[deprecated FVarId.getDecl]
def getLocalDecl (fvarId : FVarId) : MetaM LocalDecl := do
fvarId.getDecl
/-- Return the type of the given free variable. -/
def _root_.Lean.FVarId.getType (fvarId : FVarId) : MetaM Expr :=
return (← fvarId.getDecl).type
/-- Return the binder information for the given free variable. -/
def _root_.Lean.FVarId.getBinderInfo (fvarId : FVarId) : MetaM BinderInfo :=
return (← fvarId.getDecl).binderInfo
/-- Return `some value` if the given free variable is a let-declaration, and `none` otherwise. -/
def _root_.Lean.FVarId.getValue? (fvarId : FVarId) : MetaM (Option Expr) :=
return (← fvarId.getDecl).value?
/-- Return the user-facing name for the given free variable. -/
def _root_.Lean.FVarId.getUserName (fvarId : FVarId) : MetaM Name :=
return (← fvarId.getDecl).userName
/-- Return `true` is the free variable is a let-variable. -/
def _root_.Lean.FVarId.isLetVar (fvarId : FVarId) : MetaM Bool :=
return (← fvarId.getDecl).isLet
/-- Get the local declaration associated to the given `Expr` in the current local
context. Fails if the given expression is not a fvar or if no such declaration exists. -/
def getFVarLocalDecl (fvar : Expr) : MetaM LocalDecl :=
fvar.fvarId!.getDecl
/--
Given a user-facing name for a free variable, return its declaration in the current local context.
Throw an exception if free variable is not declared.
-/
def getLocalDeclFromUserName (userName : Name) : MetaM LocalDecl := do
match (← getLCtx).findFromUserName? userName with
| some d => pure d
| none => throwError "unknown local declaration '{userName}'"
/-- Given a user-facing name for a free variable, return the free variable or throw if not declared. -/
def getFVarFromUserName (userName : Name) : MetaM Expr := do
let d ← getLocalDeclFromUserName userName
return Expr.fvar d.fvarId
/--
Lift a `MkBindingM` monadic action `x` to `MetaM`.
-/
@[inline] def liftMkBindingM (x : MetavarContext.MkBindingM α) : MetaM α := do
match x { lctx := (← getLCtx), mainModule := (← getEnv).mainModule } { mctx := (← getMCtx), ngen := (← getNGen), nextMacroScope := (← getThe Core.State).nextMacroScope } with
| .ok e sNew => do
setMCtx sNew.mctx
modifyThe Core.State fun s => { s with ngen := sNew.ngen, nextMacroScope := sNew.nextMacroScope }
pure e
| .error (.revertFailure ..) sNew => do
setMCtx sNew.mctx
modifyThe Core.State fun s => { s with ngen := sNew.ngen, nextMacroScope := sNew.nextMacroScope }
throwError "failed to create binder due to failure when reverting variable dependencies"
/--
Similar to `abstracM` but consider only the first `min n xs.size` entries in `xs`
It is also similar to `Expr.abstractRange`, but handles metavariables correctly.
It uses `elimMVarDeps` to ensure `e` and the type of the free variables `xs` do not
contain a metavariable `?m` s.t. local context of `?m` contains a free variable in `xs`.
-/
def _root_.Lean.Expr.abstractRangeM (e : Expr) (n : Nat) (xs : Array Expr) : MetaM Expr :=
liftMkBindingM <| MetavarContext.abstractRange e n xs
@[deprecated Expr.abstractRangeM]
def abstractRange (e : Expr) (n : Nat) (xs : Array Expr) : MetaM Expr :=
e.abstractRangeM n xs
/--
Replace free (or meta) variables `xs` with loose bound variables.
Similar to `Expr.abstract`, but handles metavariables correctly.
-/
def _root_.Lean.Expr.abstractM (e : Expr) (xs : Array Expr) : MetaM Expr :=
e.abstractRangeM xs.size xs
@[deprecated Expr.abstractM]
def abstract (e : Expr) (xs : Array Expr) : MetaM Expr :=
e.abstractM xs
/--
Collect forward dependencies for the free variables in `toRevert`.
Recall that when reverting free variables `xs`, we must also revert their forward dependencies.
-/
def collectForwardDeps (toRevert : Array Expr) (preserveOrder : Bool) : MetaM (Array Expr) := do
liftMkBindingM <| MetavarContext.collectForwardDeps toRevert preserveOrder
/-- Takes an array `xs` of free variables or metavariables and a term `e` that may contain those variables, and abstracts and binds them as universal quantifiers.
- if `usedOnly = true` then only variables that the expression body depends on will appear.
- if `usedLetOnly = true` same as `usedOnly` except for let-bound variables. (That is, local constants which have been assigned a value.)
-/
def mkForallFVars (xs : Array Expr) (e : Expr) (usedOnly : Bool := false) (usedLetOnly : Bool := true) (binderInfoForMVars := BinderInfo.implicit) : MetaM Expr :=
if xs.isEmpty then return e else liftMkBindingM <| MetavarContext.mkForall xs e usedOnly usedLetOnly binderInfoForMVars
/-- Takes an array `xs` of free variables and metavariables and a
body term `e` and creates `fun ..xs => e`, suitably
abstracting `e` and the types in `xs`. -/
def mkLambdaFVars (xs : Array Expr) (e : Expr) (usedOnly : Bool := false) (usedLetOnly : Bool := true) (binderInfoForMVars := BinderInfo.implicit) : MetaM Expr :=
if xs.isEmpty then return e else liftMkBindingM <| MetavarContext.mkLambda xs e usedOnly usedLetOnly binderInfoForMVars
def mkLetFVars (xs : Array Expr) (e : Expr) (usedLetOnly := true) (binderInfoForMVars := BinderInfo.implicit) : MetaM Expr :=
mkLambdaFVars xs e (usedLetOnly := usedLetOnly) (binderInfoForMVars := binderInfoForMVars)
/-- `fun _ : Unit => a` -/
def mkFunUnit (a : Expr) : MetaM Expr :=
return Lean.mkLambda (← mkFreshUserName `x) BinderInfo.default (mkConst ``Unit) a
def elimMVarDeps (xs : Array Expr) (e : Expr) (preserveOrder : Bool := false) : MetaM Expr :=
if xs.isEmpty then pure e else liftMkBindingM <| MetavarContext.elimMVarDeps xs e preserveOrder
/-- `withConfig f x` executes `x` using the updated configuration object obtained by applying `f`. -/
@[inline] def withConfig (f : Config → Config) : n α → n α :=
mapMetaM <| withReader (fun ctx => { ctx with config := f ctx.config })
/--
Executes `x` tracking zeta reductions `Config.trackZeta := true`
-/
@[inline] def withTrackingZeta (x : n α) : n α :=
withConfig (fun cfg => { cfg with trackZeta := true }) x
@[inline] def withoutProofIrrelevance (x : n α) : n α :=
withConfig (fun cfg => { cfg with proofIrrelevance := false }) x
@[inline] def withTransparency (mode : TransparencyMode) : n α → n α :=
mapMetaM <| withConfig (fun config => { config with transparency := mode })
/-- `withDefault x` executes `x` using the default transparency setting. -/
@[inline] def withDefault (x : n α) : n α :=
withTransparency TransparencyMode.default x
/-- `withReducible x` executes `x` using the reducible transparency setting. In this setting only definitions tagged as `[reducible]` are unfolded. -/
@[inline] def withReducible (x : n α) : n α :=
withTransparency TransparencyMode.reducible x
/--
`withReducibleAndInstances x` executes `x` using the `.instances` transparency setting. In this setting only definitions tagged as `[reducible]`
or type class instances are unfolded.
-/
@[inline] def withReducibleAndInstances (x : n α) : n α :=
withTransparency TransparencyMode.instances x
/--
Execute `x` ensuring the transparency setting is at least `mode`.
Recall that `.all > .default > .instances > .reducible`.
-/
@[inline] def withAtLeastTransparency (mode : TransparencyMode) (x : n α) : n α :=
withConfig
(fun config =>
let oldMode := config.transparency
let mode := if oldMode.lt mode then mode else oldMode
{ config with transparency := mode })
x
/-- Execute `x` allowing `isDefEq` to assign synthetic opaque metavariables. -/
@[inline] def withAssignableSyntheticOpaque (x : n α) : n α :=
withConfig (fun config => { config with assignSyntheticOpaque := true }) x
/-- Save cache, execute `x`, restore cache -/
@[inline] private def savingCacheImpl (x : MetaM α) : MetaM α := do
let savedCache := (← get).cache
try x finally modify fun s => { s with cache := savedCache }
@[inline] def savingCache : n α → n α :=
mapMetaM savingCacheImpl
def getTheoremInfo (info : ConstantInfo) : MetaM (Option ConstantInfo) := do
if (← shouldReduceAll) then
return some info
else
return none
private def getDefInfoTemp (info : ConstantInfo) : MetaM (Option ConstantInfo) := do
match (← getTransparency) with
| TransparencyMode.all => return some info
| TransparencyMode.default => return some info
| _ =>
if (← isReducible info.name) then
return some info
else
return none
/-- Remark: we later define `getUnfoldableConst?` at `GetConst.lean` after we define `Instances.lean`.
This method is only used to implement `isClassQuickConst?`.
It is very similar to `getUnfoldableConst?`, but it returns none when `TransparencyMode.instances` and
`constName` is an instance. This difference should be irrelevant for `isClassQuickConst?`. -/
private def getConstTemp? (constName : Name) : MetaM (Option ConstantInfo) := do
match (← getEnv).find? constName with
| some (info@(ConstantInfo.thmInfo _)) => getTheoremInfo info
| some (info@(ConstantInfo.defnInfo _)) => getDefInfoTemp info
| some info => pure (some info)
| none => throwUnknownConstant constName
private def isClassQuickConst? (constName : Name) : MetaM (LOption Name) := do
if isClass (← getEnv) constName then
return .some constName
else
match (← getConstTemp? constName) with
| some (.defnInfo ..) => return .undef -- We may be able to unfold the definition
| _ => return .none
private partial def isClassQuick? : Expr → MetaM (LOption Name)
| .bvar .. => return .none
| .lit .. => return .none
| .fvar .. => return .none
| .sort .. => return .none
| .lam .. => return .none
| .letE .. => return .undef
| .proj .. => return .undef
| .forallE _ _ b _ => isClassQuick? b
| .mdata _ e => isClassQuick? e
| .const n _ => isClassQuickConst? n
| .mvar mvarId => do
let some val ← getExprMVarAssignment? mvarId | return .none
isClassQuick? val
| .app f _ => do
match f.getAppFn with
| .const n .. => isClassQuickConst? n
| .lam .. => return .undef
| .mvar mvarId =>
let some val ← getExprMVarAssignment? mvarId | return .none
match val.getAppFn with
| .const n .. => isClassQuickConst? n
| _ => return .undef
| _ => return .none
private def withNewLocalInstanceImp (className : Name) (fvar : Expr) (k : MetaM α) : MetaM α := do
let localDecl ← getFVarLocalDecl fvar
if localDecl.isImplementationDetail then
k
else
withReader (fun ctx => { ctx with localInstances := ctx.localInstances.push { className := className, fvar := fvar } }) k
/-- Add entry `{ className := className, fvar := fvar }` to localInstances,
and then execute continuation `k`. -/
def withNewLocalInstance (className : Name) (fvar : Expr) : n α → n α :=
mapMetaM <| withNewLocalInstanceImp className fvar
private def fvarsSizeLtMaxFVars (fvars : Array Expr) (maxFVars? : Option Nat) : Bool :=
match maxFVars? with
| some maxFVars => fvars.size < maxFVars
| none => true
mutual
/--
`withNewLocalInstances isClassExpensive fvars j k` updates the vector or local instances
using free variables `fvars[j] ... fvars.back`, and execute `k`.
- `isClassExpensive` is defined later.
- `isClassExpensive` uses `whnf` which depends (indirectly) on the set of local instances. -/
private partial def withNewLocalInstancesImp
(fvars : Array Expr) (i : Nat) (k : MetaM α) : MetaM α := do
if h : i < fvars.size then
let fvar := fvars.get ⟨i, h⟩
let decl ← getFVarLocalDecl fvar
match (← isClassQuick? decl.type) with
| .none => withNewLocalInstancesImp fvars (i+1) k
| .undef =>
match (← isClassExpensive? decl.type) with
| none => withNewLocalInstancesImp fvars (i+1) k
| some c => withNewLocalInstance c fvar <| withNewLocalInstancesImp fvars (i+1) k
| .some c => withNewLocalInstance c fvar <| withNewLocalInstancesImp fvars (i+1) k
else
k
/--
`forallTelescopeAuxAux lctx fvars j type`
Remarks:
- `lctx` is the `MetaM` local context extended with declarations for `fvars`.
- `type` is the type we are computing the telescope for. It contains only
dangling bound variables in the range `[j, fvars.size)`
- if `reducing? == true` and `type` is not `forallE`, we use `whnf`.
- when `type` is not a `forallE` nor it can't be reduced to one, we
execute the continuation `k`.
Here is an example that demonstrates the `reducing?`.
Suppose we have
```
abbrev StateM s a := s -> Prod a s
```
Now, assume we are trying to build the telescope for
```
forall (x : Nat), StateM Int Bool
```
if `reducing == true`, the function executes `k #[(x : Nat) (s : Int)] Bool`.
if `reducing == false`, the function executes `k #[(x : Nat)] (StateM Int Bool)`
if `maxFVars?` is `some max`, then we interrupt the telescope construction
when `fvars.size == max`
-/
private partial def forallTelescopeReducingAuxAux
(reducing : Bool) (maxFVars? : Option Nat)
(type : Expr)
(k : Array Expr → Expr → MetaM α) : MetaM α := do
let rec process (lctx : LocalContext) (fvars : Array Expr) (j : Nat) (type : Expr) : MetaM α := do
match type with
| .forallE n d b bi =>
if fvarsSizeLtMaxFVars fvars maxFVars? then
let d := d.instantiateRevRange j fvars.size fvars
let fvarId ← mkFreshFVarId
let lctx := lctx.mkLocalDecl fvarId n d bi
let fvar := mkFVar fvarId
let fvars := fvars.push fvar
process lctx fvars j b
else
let type := type.instantiateRevRange j fvars.size fvars;
withReader (fun ctx => { ctx with lctx := lctx }) do
withNewLocalInstancesImp fvars j do
k fvars type
| _ =>
let type := type.instantiateRevRange j fvars.size fvars;
withReader (fun ctx => { ctx with lctx := lctx }) do
withNewLocalInstancesImp fvars j do
if reducing && fvarsSizeLtMaxFVars fvars maxFVars? then
let newType ← whnf type
if newType.isForall then
process lctx fvars fvars.size newType
else
k fvars type
else
k fvars type
process (← getLCtx) #[] 0 type
private partial def forallTelescopeReducingAux (type : Expr) (maxFVars? : Option Nat) (k : Array Expr → Expr → MetaM α) : MetaM α := do