forked from leanprover/lean4
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAppBuilder.lean
617 lines (542 loc) · 23.6 KB
/
AppBuilder.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
/-
Copyright (c) 2019 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
import Lean.Structure
import Lean.Util.Recognizers
import Lean.Meta.SynthInstance
import Lean.Meta.Check
import Lean.Meta.DecLevel
namespace Lean.Meta
/-- Return `id e` -/
def mkId (e : Expr) : MetaM Expr := do
let type ← inferType e
let u ← getLevel type
return mkApp2 (mkConst ``id [u]) type e
/--
Given `e` s.t. `inferType e` is definitionally equal to `expectedType`, return
term `@id expectedType e`. -/
def mkExpectedTypeHint (e : Expr) (expectedType : Expr) : MetaM Expr := do
let u ← getLevel expectedType
return mkApp2 (mkConst ``id [u]) expectedType e
/--
`mkLetFun x v e` creates the encoding for the `let_fun x := v; e` expression.
The expression `x` can either be a free variable or a metavariable, and the function suitably abstracts `x` in `e`.
-/
def mkLetFun (x : Expr) (v : Expr) (e : Expr) : MetaM Expr := do
let f ← mkLambdaFVars #[x] e
let ety ← inferType e
let α ← inferType x
let β ← mkLambdaFVars #[x] ety
let u1 ← getLevel α
let u2 ← getLevel ety
return mkAppN (.const ``letFun [u1, u2]) #[α, β, v, f]
/-- Return `a = b`. -/
def mkEq (a b : Expr) : MetaM Expr := do
let aType ← inferType a
let u ← getLevel aType
return mkApp3 (mkConst ``Eq [u]) aType a b
/-- Return `HEq a b`. -/
def mkHEq (a b : Expr) : MetaM Expr := do
let aType ← inferType a
let bType ← inferType b
let u ← getLevel aType
return mkApp4 (mkConst ``HEq [u]) aType a bType b
/--
If `a` and `b` have definitionally equal types, return `Eq a b`, otherwise return `HEq a b`.
-/
def mkEqHEq (a b : Expr) : MetaM Expr := do
let aType ← inferType a
let bType ← inferType b
let u ← getLevel aType
if (← isDefEq aType bType) then
return mkApp3 (mkConst ``Eq [u]) aType a b
else
return mkApp4 (mkConst ``HEq [u]) aType a bType b
/-- Return a proof of `a = a`. -/
def mkEqRefl (a : Expr) : MetaM Expr := do
let aType ← inferType a
let u ← getLevel aType
return mkApp2 (mkConst ``Eq.refl [u]) aType a
/-- Return a proof of `HEq a a`. -/
def mkHEqRefl (a : Expr) : MetaM Expr := do
let aType ← inferType a
let u ← getLevel aType
return mkApp2 (mkConst ``HEq.refl [u]) aType a
/-- Given `hp : P` and `nhp : Not P` returns an instance of type `e`. -/
def mkAbsurd (e : Expr) (hp hnp : Expr) : MetaM Expr := do
let p ← inferType hp
let u ← getLevel e
return mkApp4 (mkConst ``absurd [u]) p e hp hnp
/-- Given `h : False`, return an instance of type `e`. -/
def mkFalseElim (e : Expr) (h : Expr) : MetaM Expr := do
let u ← getLevel e
return mkApp2 (mkConst ``False.elim [u]) e h
private def infer (h : Expr) : MetaM Expr := do
let hType ← inferType h
whnfD hType
private def hasTypeMsg (e type : Expr) : MessageData :=
m!"{indentExpr e}\nhas type{indentExpr type}"
private def throwAppBuilderException {α} (op : Name) (msg : MessageData) : MetaM α :=
throwError "AppBuilder for '{op}', {msg}"
/-- Given `h : a = b`, returns a proof of `b = a`. -/
def mkEqSymm (h : Expr) : MetaM Expr := do
if h.isAppOf ``Eq.refl then
return h
else
let hType ← infer h
match hType.eq? with
| some (α, a, b) =>
let u ← getLevel α
return mkApp4 (mkConst ``Eq.symm [u]) α a b h
| none => throwAppBuilderException ``Eq.symm ("equality proof expected" ++ hasTypeMsg h hType)
/-- Given `h₁ : a = b` and `h₂ : b = c` returns a proof of `a = c`. -/
def mkEqTrans (h₁ h₂ : Expr) : MetaM Expr := do
if h₁.isAppOf ``Eq.refl then
return h₂
else if h₂.isAppOf ``Eq.refl then
return h₁
else
let hType₁ ← infer h₁
let hType₂ ← infer h₂
match hType₁.eq?, hType₂.eq? with
| some (α, a, b), some (_, _, c) =>
let u ← getLevel α
return mkApp6 (mkConst ``Eq.trans [u]) α a b c h₁ h₂
| none, _ => throwAppBuilderException ``Eq.trans ("equality proof expected" ++ hasTypeMsg h₁ hType₁)
| _, none => throwAppBuilderException ``Eq.trans ("equality proof expected" ++ hasTypeMsg h₂ hType₂)
/-- Given `h : HEq a b`, returns a proof of `HEq b a`. -/
def mkHEqSymm (h : Expr) : MetaM Expr := do
if h.isAppOf ``HEq.refl then
return h
else
let hType ← infer h
match hType.heq? with
| some (α, a, β, b) =>
let u ← getLevel α
return mkApp5 (mkConst ``HEq.symm [u]) α β a b h
| none =>
throwAppBuilderException ``HEq.symm ("heterogeneous equality proof expected" ++ hasTypeMsg h hType)
/-- Given `h₁ : HEq a b`, `h₂ : HEq b c`, returns a proof of `HEq a c`. -/
def mkHEqTrans (h₁ h₂ : Expr) : MetaM Expr := do
if h₁.isAppOf ``HEq.refl then
return h₂
else if h₂.isAppOf ``HEq.refl then
return h₁
else
let hType₁ ← infer h₁
let hType₂ ← infer h₂
match hType₁.heq?, hType₂.heq? with
| some (α, a, β, b), some (_, _, γ, c) =>
let u ← getLevel α
return mkApp8 (mkConst ``HEq.trans [u]) α β γ a b c h₁ h₂
| none, _ => throwAppBuilderException ``HEq.trans ("heterogeneous equality proof expected" ++ hasTypeMsg h₁ hType₁)
| _, none => throwAppBuilderException ``HEq.trans ("heterogeneous equality proof expected" ++ hasTypeMsg h₂ hType₂)
/-- Given `h : Eq a b`, returns a proof of `HEq a b`. -/
def mkEqOfHEq (h : Expr) : MetaM Expr := do
let hType ← infer h
match hType.heq? with
| some (α, a, β, b) =>
unless (← isDefEq α β) do
throwAppBuilderException ``eq_of_heq m!"heterogeneous equality types are not definitionally equal{indentExpr α}\nis not definitionally equal to{indentExpr β}"
let u ← getLevel α
return mkApp4 (mkConst ``eq_of_heq [u]) α a b h
| _ =>
throwAppBuilderException ``HEq.trans m!"heterogeneous equality proof expected{indentExpr h}"
/-- Given `f : α → β` and `h : a = b`, returns a proof of `f a = f b`.-/
def mkCongrArg (f h : Expr) : MetaM Expr := do
if h.isAppOf ``Eq.refl then
mkEqRefl (mkApp f h.appArg!)
else
let hType ← infer h
let fType ← infer f
match fType.arrow?, hType.eq? with
| some (α, β), some (_, a, b) =>
let u ← getLevel α
let v ← getLevel β
return mkApp6 (mkConst ``congrArg [u, v]) α β a b f h
| none, _ => throwAppBuilderException ``congrArg ("non-dependent function expected" ++ hasTypeMsg f fType)
| _, none => throwAppBuilderException ``congrArg ("equality proof expected" ++ hasTypeMsg h hType)
/-- Given `h : f = g` and `a : α`, returns a proof of `f a = g a`.-/
def mkCongrFun (h a : Expr) : MetaM Expr := do
if h.isAppOf ``Eq.refl then
mkEqRefl (mkApp h.appArg! a)
else
let hType ← infer h
match hType.eq? with
| some (ρ, f, g) => do
let ρ ← whnfD ρ
match ρ with
| Expr.forallE n α β _ =>
let β' := Lean.mkLambda n BinderInfo.default α β
let u ← getLevel α
let v ← getLevel (mkApp β' a)
return mkApp6 (mkConst ``congrFun [u, v]) α β' f g h a
| _ => throwAppBuilderException ``congrFun ("equality proof between functions expected" ++ hasTypeMsg h hType)
| _ => throwAppBuilderException ``congrFun ("equality proof expected" ++ hasTypeMsg h hType)
/-- Given `h₁ : f = g` and `h₂ : a = b`, returns a proof of `f a = g b`. -/
def mkCongr (h₁ h₂ : Expr) : MetaM Expr := do
if h₁.isAppOf ``Eq.refl then
mkCongrArg h₁.appArg! h₂
else if h₂.isAppOf ``Eq.refl then
mkCongrFun h₁ h₂.appArg!
else
let hType₁ ← infer h₁
let hType₂ ← infer h₂
match hType₁.eq?, hType₂.eq? with
| some (ρ, f, g), some (α, a, b) =>
let ρ ← whnfD ρ
match ρ.arrow? with
| some (_, β) => do
let u ← getLevel α
let v ← getLevel β
return mkApp8 (mkConst ``congr [u, v]) α β f g a b h₁ h₂
| _ => throwAppBuilderException ``congr ("non-dependent function expected" ++ hasTypeMsg h₁ hType₁)
| none, _ => throwAppBuilderException ``congr ("equality proof expected" ++ hasTypeMsg h₁ hType₁)
| _, none => throwAppBuilderException ``congr ("equality proof expected" ++ hasTypeMsg h₂ hType₂)
private def mkAppMFinal (methodName : Name) (f : Expr) (args : Array Expr) (instMVars : Array MVarId) : MetaM Expr := do
instMVars.forM fun mvarId => do
let mvarDecl ← mvarId.getDecl
let mvarVal ← synthInstance mvarDecl.type
mvarId.assign mvarVal
let result ← instantiateMVars (mkAppN f args)
if (← hasAssignableMVar result) then throwAppBuilderException methodName ("result contains metavariables" ++ indentExpr result)
return result
private partial def mkAppMArgs (f : Expr) (fType : Expr) (xs : Array Expr) : MetaM Expr :=
let rec loop (type : Expr) (i : Nat) (j : Nat) (args : Array Expr) (instMVars : Array MVarId) : MetaM Expr := do
if i >= xs.size then
mkAppMFinal `mkAppM f args instMVars
else match type with
| Expr.forallE n d b bi =>
let d := d.instantiateRevRange j args.size args
match bi with
| BinderInfo.implicit =>
let mvar ← mkFreshExprMVar d MetavarKind.natural n
loop b i j (args.push mvar) instMVars
| BinderInfo.strictImplicit =>
let mvar ← mkFreshExprMVar d MetavarKind.natural n
loop b i j (args.push mvar) instMVars
| BinderInfo.instImplicit =>
let mvar ← mkFreshExprMVar d MetavarKind.synthetic n
loop b i j (args.push mvar) (instMVars.push mvar.mvarId!)
| _ =>
let x := xs[i]!
let xType ← inferType x
if (← isDefEq d xType) then
loop b (i+1) j (args.push x) instMVars
else
throwAppTypeMismatch (mkAppN f args) x
| type =>
let type := type.instantiateRevRange j args.size args
let type ← whnfD type
if type.isForall then
loop type i args.size args instMVars
else
throwAppBuilderException `mkAppM m!"too many explicit arguments provided to{indentExpr f}\narguments{indentD xs}"
loop fType 0 0 #[] #[]
private def mkFun (constName : Name) : MetaM (Expr × Expr) := do
let cinfo ← getConstInfo constName
let us ← cinfo.levelParams.mapM fun _ => mkFreshLevelMVar
let f := mkConst constName us
let fType ← instantiateTypeLevelParams cinfo us
return (f, fType)
private def withAppBuilderTrace [ToMessageData α] [ToMessageData β]
(f : α) (xs : β) (k : MetaM Expr) : MetaM Expr :=
let emoji | .ok .. => checkEmoji | .error .. => crossEmoji
withTraceNode `Meta.appBuilder (return m!"{emoji ·} f: {f}, xs: {xs}") do
try
let res ← k
trace[Meta.appBuilder.result] res
pure res
catch ex =>
trace[Meta.appBuilder.error] ex.toMessageData
throw ex
/--
Return the application `constName xs`.
It tries to fill the implicit arguments before the last element in `xs`.
Remark:
``mkAppM `arbitrary #[α]`` returns `@arbitrary.{u} α` without synthesizing
the implicit argument occurring after `α`.
Given a `x : (([Decidable p] → Bool) × Nat`, ``mkAppM `Prod.fst #[x]`` returns `@Prod.fst ([Decidable p] → Bool) Nat x`
-/
def mkAppM (constName : Name) (xs : Array Expr) : MetaM Expr := do
withAppBuilderTrace constName xs do withNewMCtxDepth do
let (f, fType) ← mkFun constName
mkAppMArgs f fType xs
/-- Similar to `mkAppM`, but takes an `Expr` instead of a constant name. -/
def mkAppM' (f : Expr) (xs : Array Expr) : MetaM Expr := do
let fType ← inferType f
withAppBuilderTrace f xs do withNewMCtxDepth do
mkAppMArgs f fType xs
private partial def mkAppOptMAux (f : Expr) (xs : Array (Option Expr)) : Nat → Array Expr → Nat → Array MVarId → Expr → MetaM Expr
| i, args, j, instMVars, Expr.forallE n d b bi => do
let d := d.instantiateRevRange j args.size args
if h : i < xs.size then
match xs.get ⟨i, h⟩ with
| none =>
match bi with
| BinderInfo.instImplicit => do
let mvar ← mkFreshExprMVar d MetavarKind.synthetic n
mkAppOptMAux f xs (i+1) (args.push mvar) j (instMVars.push mvar.mvarId!) b
| _ => do
let mvar ← mkFreshExprMVar d MetavarKind.natural n
mkAppOptMAux f xs (i+1) (args.push mvar) j instMVars b
| some x =>
let xType ← inferType x
if (← isDefEq d xType) then
mkAppOptMAux f xs (i+1) (args.push x) j instMVars b
else
throwAppTypeMismatch (mkAppN f args) x
else
mkAppMFinal `mkAppOptM f args instMVars
| i, args, j, instMVars, type => do
let type := type.instantiateRevRange j args.size args
let type ← whnfD type
if type.isForall then
mkAppOptMAux f xs i args args.size instMVars type
else if i == xs.size then
mkAppMFinal `mkAppOptM f args instMVars
else do
let xs : Array Expr := xs.foldl (fun r x? => match x? with | none => r | some x => r.push x) #[]
throwAppBuilderException `mkAppOptM ("too many arguments provided to" ++ indentExpr f ++ Format.line ++ "arguments" ++ xs)
/--
Similar to `mkAppM`, but it allows us to specify which arguments are provided explicitly using `Option` type.
Example:
Given `Pure.pure {m : Type u → Type v} [Pure m] {α : Type u} (a : α) : m α`,
```
mkAppOptM `Pure.pure #[m, none, none, a]
```
returns a `Pure.pure` application if the instance `Pure m` can be synthesized, and the universe match.
Note that,
```
mkAppM `Pure.pure #[a]
```
fails because the only explicit argument `(a : α)` is not sufficient for inferring the remaining arguments,
we would need the expected type. -/
def mkAppOptM (constName : Name) (xs : Array (Option Expr)) : MetaM Expr := do
withAppBuilderTrace constName xs do withNewMCtxDepth do
let (f, fType) ← mkFun constName
mkAppOptMAux f xs 0 #[] 0 #[] fType
/-- Similar to `mkAppOptM`, but takes an `Expr` instead of a constant name. -/
def mkAppOptM' (f : Expr) (xs : Array (Option Expr)) : MetaM Expr := do
let fType ← inferType f
withAppBuilderTrace f xs do withNewMCtxDepth do
mkAppOptMAux f xs 0 #[] 0 #[] fType
def mkEqNDRec (motive h1 h2 : Expr) : MetaM Expr := do
if h2.isAppOf ``Eq.refl then
return h1
else
let h2Type ← infer h2
match h2Type.eq? with
| none => throwAppBuilderException ``Eq.ndrec ("equality proof expected" ++ hasTypeMsg h2 h2Type)
| some (α, a, b) =>
let u2 ← getLevel α
let motiveType ← infer motive
match motiveType with
| Expr.forallE _ _ (Expr.sort u1) _ =>
return mkAppN (mkConst ``Eq.ndrec [u1, u2]) #[α, a, motive, h1, b, h2]
| _ => throwAppBuilderException ``Eq.ndrec ("invalid motive" ++ indentExpr motive)
def mkEqRec (motive h1 h2 : Expr) : MetaM Expr := do
if h2.isAppOf ``Eq.refl then
return h1
else
let h2Type ← infer h2
match h2Type.eq? with
| none => throwAppBuilderException ``Eq.rec ("equality proof expected" ++ indentExpr h2)
| some (α, a, b) =>
let u2 ← getLevel α
let motiveType ← infer motive
match motiveType with
| Expr.forallE _ _ (Expr.forallE _ _ (Expr.sort u1) _) _ =>
return mkAppN (mkConst ``Eq.rec [u1, u2]) #[α, a, motive, h1, b, h2]
| _ =>
throwAppBuilderException ``Eq.rec ("invalid motive" ++ indentExpr motive)
def mkEqMP (eqProof pr : Expr) : MetaM Expr :=
mkAppM ``Eq.mp #[eqProof, pr]
def mkEqMPR (eqProof pr : Expr) : MetaM Expr :=
mkAppM ``Eq.mpr #[eqProof, pr]
def mkNoConfusion (target : Expr) (h : Expr) : MetaM Expr := do
let type ← inferType h
let type ← whnf type
match type.eq? with
| none => throwAppBuilderException `noConfusion ("equality expected" ++ hasTypeMsg h type)
| some (α, a, b) =>
let α ← whnfD α
matchConstInduct α.getAppFn (fun _ => throwAppBuilderException `noConfusion ("inductive type expected" ++ indentExpr α)) fun v us => do
let u ← getLevel target
return mkAppN (mkConst (Name.mkStr v.name "noConfusion") (u :: us)) (α.getAppArgs ++ #[target, a, b, h])
/-- Given a `monad` and `e : α`, makes `pure e`.-/
def mkPure (monad : Expr) (e : Expr) : MetaM Expr :=
mkAppOptM ``Pure.pure #[monad, none, none, e]
/--
`mkProjection s fieldName` returns an expression for accessing field `fieldName` of the structure `s`.
Remark: `fieldName` may be a subfield of `s`. -/
partial def mkProjection (s : Expr) (fieldName : Name) : MetaM Expr := do
let type ← inferType s
let type ← whnf type
match type.getAppFn with
| Expr.const structName us =>
let env ← getEnv
unless isStructure env structName do
throwAppBuilderException `mkProjection ("structure expected" ++ hasTypeMsg s type)
match getProjFnForField? env structName fieldName with
| some projFn =>
let params := type.getAppArgs
return mkApp (mkAppN (mkConst projFn us) params) s
| none =>
let fields := getStructureFields env structName
let r? ← fields.findSomeM? fun fieldName' => do
match isSubobjectField? env structName fieldName' with
| none => pure none
| some _ =>
let parent ← mkProjection s fieldName'
(do let r ← mkProjection parent fieldName; return some r)
<|>
pure none
match r? with
| some r => pure r
| none => throwAppBuilderException `mkProjection ("invalid field name '" ++ toString fieldName ++ "' for" ++ hasTypeMsg s type)
| _ => throwAppBuilderException `mkProjection ("structure expected" ++ hasTypeMsg s type)
private def mkListLitAux (nil : Expr) (cons : Expr) : List Expr → Expr
| [] => nil
| x::xs => mkApp (mkApp cons x) (mkListLitAux nil cons xs)
def mkListLit (type : Expr) (xs : List Expr) : MetaM Expr := do
let u ← getDecLevel type
let nil := mkApp (mkConst ``List.nil [u]) type
match xs with
| [] => return nil
| _ =>
let cons := mkApp (mkConst ``List.cons [u]) type
return mkListLitAux nil cons xs
def mkArrayLit (type : Expr) (xs : List Expr) : MetaM Expr := do
let u ← getDecLevel type
let listLit ← mkListLit type xs
return mkApp (mkApp (mkConst ``List.toArray [u]) type) listLit
def mkSorry (type : Expr) (synthetic : Bool) : MetaM Expr := do
let u ← getLevel type
return mkApp2 (mkConst ``sorryAx [u]) type (toExpr synthetic)
/-- Return `Decidable.decide p` -/
def mkDecide (p : Expr) : MetaM Expr :=
mkAppOptM ``Decidable.decide #[p, none]
/-- Return a proof for `p : Prop` using `decide p` -/
def mkDecideProof (p : Expr) : MetaM Expr := do
let decP ← mkDecide p
let decEqTrue ← mkEq decP (mkConst ``Bool.true)
let h ← mkEqRefl (mkConst ``Bool.true)
let h ← mkExpectedTypeHint h decEqTrue
mkAppM ``of_decide_eq_true #[h]
/-- Return `a < b` -/
def mkLt (a b : Expr) : MetaM Expr :=
mkAppM ``LT.lt #[a, b]
/-- Return `a <= b` -/
def mkLe (a b : Expr) : MetaM Expr :=
mkAppM ``LE.le #[a, b]
/-- Return `Inhabited.default α` -/
def mkDefault (α : Expr) : MetaM Expr :=
mkAppOptM ``Inhabited.default #[α, none]
/-- Return `@Classical.ofNonempty α _` -/
def mkOfNonempty (α : Expr) : MetaM Expr := do
mkAppOptM ``Classical.ofNonempty #[α, none]
/-- Return `sorryAx type` -/
def mkSyntheticSorry (type : Expr) : MetaM Expr :=
return mkApp2 (mkConst ``sorryAx [← getLevel type]) type (mkConst ``Bool.true)
/-- Return `funext h` -/
def mkFunExt (h : Expr) : MetaM Expr :=
mkAppM ``funext #[h]
/-- Return `propext h` -/
def mkPropExt (h : Expr) : MetaM Expr :=
mkAppM ``propext #[h]
/-- Return `let_congr h₁ h₂` -/
def mkLetCongr (h₁ h₂ : Expr) : MetaM Expr :=
mkAppM ``let_congr #[h₁, h₂]
/-- Return `let_val_congr b h` -/
def mkLetValCongr (b h : Expr) : MetaM Expr :=
mkAppM ``let_val_congr #[b, h]
/-- Return `let_body_congr a h` -/
def mkLetBodyCongr (a h : Expr) : MetaM Expr :=
mkAppM ``let_body_congr #[a, h]
/-- Return `of_eq_true h` -/
def mkOfEqTrue (h : Expr) : MetaM Expr :=
mkAppM ``of_eq_true #[h]
/-- Return `eq_true h` -/
def mkEqTrue (h : Expr) : MetaM Expr :=
mkAppM ``eq_true #[h]
/--
Return `eq_false h`
`h` must have type definitionally equal to `¬ p` in the current
reducibility setting. -/
def mkEqFalse (h : Expr) : MetaM Expr :=
mkAppM ``eq_false #[h]
/--
Return `eq_false' h`
`h` must have type definitionally equal to `p → False` in the current
reducibility setting. -/
def mkEqFalse' (h : Expr) : MetaM Expr :=
mkAppM ``eq_false' #[h]
def mkImpCongr (h₁ h₂ : Expr) : MetaM Expr :=
mkAppM ``implies_congr #[h₁, h₂]
def mkImpCongrCtx (h₁ h₂ : Expr) : MetaM Expr :=
mkAppM ``implies_congr_ctx #[h₁, h₂]
def mkImpDepCongrCtx (h₁ h₂ : Expr) : MetaM Expr :=
mkAppM ``implies_dep_congr_ctx #[h₁, h₂]
def mkForallCongr (h : Expr) : MetaM Expr :=
mkAppM ``forall_congr #[h]
/-- Return instance for `[Monad m]` if there is one -/
def isMonad? (m : Expr) : MetaM (Option Expr) :=
try
let monadType ← mkAppM `Monad #[m]
let result ← trySynthInstance monadType
match result with
| LOption.some inst => pure inst
| _ => pure none
catch _ =>
pure none
/-- Return `(n : type)`, a numeric literal of type `type`. The method fails if we don't have an instance `OfNat type n` -/
def mkNumeral (type : Expr) (n : Nat) : MetaM Expr := do
let u ← getDecLevel type
let inst ← synthInstance (mkApp2 (mkConst ``OfNat [u]) type (mkRawNatLit n))
return mkApp3 (mkConst ``OfNat.ofNat [u]) type (mkRawNatLit n) inst
/--
Return `a op b`, where `op` has name `opName` and is implemented using the typeclass `className`.
This method assumes `a` and `b` have the same type, and typeclass `className` is heterogeneous.
Examples of supported classes: `HAdd`, `HSub`, `HMul`.
We use heterogeneous operators to ensure we have a uniform representation.
-/
private def mkBinaryOp (className : Name) (opName : Name) (a b : Expr) : MetaM Expr := do
let aType ← inferType a
let u ← getDecLevel aType
let inst ← synthInstance (mkApp3 (mkConst className [u, u, u]) aType aType aType)
return mkApp6 (mkConst opName [u, u, u]) aType aType aType inst a b
/-- Return `a + b` using a heterogeneous `+`. This method assumes `a` and `b` have the same type. -/
def mkAdd (a b : Expr) : MetaM Expr := mkBinaryOp ``HAdd ``HAdd.hAdd a b
/-- Return `a - b` using a heterogeneous `-`. This method assumes `a` and `b` have the same type. -/
def mkSub (a b : Expr) : MetaM Expr := mkBinaryOp ``HSub ``HSub.hSub a b
/-- Return `a * b` using a heterogeneous `*`. This method assumes `a` and `b` have the same type. -/
def mkMul (a b : Expr) : MetaM Expr := mkBinaryOp ``HMul ``HMul.hMul a b
/--
Return `a r b`, where `r` has name `rName` and is implemented using the typeclass `className`.
This method assumes `a` and `b` have the same type.
Examples of supported classes: `LE` and `LT`.
We use heterogeneous operators to ensure we have a uniform representation.
-/
private def mkBinaryRel (className : Name) (rName : Name) (a b : Expr) : MetaM Expr := do
let aType ← inferType a
let u ← getDecLevel aType
let inst ← synthInstance (mkApp (mkConst className [u]) aType)
return mkApp4 (mkConst rName [u]) aType inst a b
/-- Return `a ≤ b`. This method assumes `a` and `b` have the same type. -/
def mkLE (a b : Expr) : MetaM Expr := mkBinaryRel ``LE ``LE.le a b
/-- Return `a < b`. This method assumes `a` and `b` have the same type. -/
def mkLT (a b : Expr) : MetaM Expr := mkBinaryRel ``LT ``LT.lt a b
/-- Given `h : a = b`, return a proof for `a ↔ b`. -/
def mkIffOfEq (h : Expr) : MetaM Expr := do
if h.isAppOfArity ``propext 3 then
return h.appArg!
else
mkAppM ``Iff.of_eq #[h]
builtin_initialize do
registerTraceClass `Meta.appBuilder
registerTraceClass `Meta.appBuilder.result (inherited := true)
registerTraceClass `Meta.appBuilder.error (inherited := true)
end Lean.Meta