Skip to content

Commit 31ea3db

Browse files
jendapmartinwicke
authored andcommitted
switch docker links from b.gcr.io to gcr.io (tensorflow#1911)
1 parent bc5e961 commit 31ea3db

File tree

3 files changed

+12
-12
lines changed

3 files changed

+12
-12
lines changed

tensorflow/examples/udacity/Dockerfile

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
FROM b.gcr.io/tensorflow/tensorflow:latest
1+
FROM gcr.io/tensorflow/tensorflow:latest
22
MAINTAINER Vincent Vanhoucke <vanhoucke@google.com>
33
RUN pip install scikit-learn
44
RUN rm -rf /notebooks/*

tensorflow/g3doc/get_started/os_setup.md

+6-6
Original file line numberDiff line numberDiff line change
@@ -184,11 +184,11 @@ packages on your machine.
184184

185185
We provide 4 Docker images:
186186

187-
* `b.gcr.io/tensorflow/tensorflow`: TensorFlow CPU binary image.
188-
* `b.gcr.io/tensorflow/tensorflow:latest-devel`: CPU Binary image plus source
187+
* `gcr.io/tensorflow/tensorflow`: TensorFlow CPU binary image.
188+
* `gcr.io/tensorflow/tensorflow:latest-devel`: CPU Binary image plus source
189189
code.
190-
* `b.gcr.io/tensorflow/tensorflow:latest-gpu`: TensorFlow GPU binary image.
191-
* `b.gcr.io/tensorflow/tensorflow:latest-devel-gpu`: GPU Binary image plus source
190+
* `gcr.io/tensorflow/tensorflow:latest-gpu`: TensorFlow GPU binary image.
191+
* `gcr.io/tensorflow/tensorflow:latest-devel-gpu`: GPU Binary image plus source
192192
code.
193193

194194
We also have tags with `latest` replaced by a released version (e.g., `0.8.0rc0-gpu`).
@@ -209,7 +209,7 @@ After Docker is installed, launch a Docker container with the TensorFlow binary
209209
image as follows.
210210

211211
```bash
212-
$ docker run -it b.gcr.io/tensorflow/tensorflow
212+
$ docker run -it gcr.io/tensorflow/tensorflow
213213
```
214214

215215
If you're using a container with GPU support, some additional flags must be
@@ -219,7 +219,7 @@ include a
219219
in the repo with these flags, so the command-line would look like
220220

221221
```bash
222-
$ path/to/repo/tensorflow/tools/docker/docker_run_gpu.sh b.gcr.io/tensorflow/tensorflow:gpu
222+
$ path/to/repo/tensorflow/tools/docker/docker_run_gpu.sh gcr.io/tensorflow/tensorflow:gpu
223223
```
224224

225225
You can now [test your installation](#test-the-tensorflow-installation) within the Docker container.

tensorflow/tools/docker/README.md

+5-5
Original file line numberDiff line numberDiff line change
@@ -16,22 +16,22 @@ quick links here:
1616

1717
We currently maintain three Docker container images:
1818

19-
* `b.gcr.io/tensorflow/tensorflow`, which is a minimal VM with TensorFlow and
19+
* `gcr.io/tensorflow/tensorflow`, which is a minimal VM with TensorFlow and
2020
all dependencies.
2121

22-
* `b.gcr.io/tensorflow/tensorflow-full`, which contains a full source
22+
* `gcr.io/tensorflow/tensorflow-full`, which contains a full source
2323
distribution and all required libraries to build and run TensorFlow from
2424
source.
2525

26-
* `b.gcr.io/tensorflow/tensorflow-full-gpu`, which is the same as the previous
26+
* `gcr.io/tensorflow/tensorflow-full-gpu`, which is the same as the previous
2727
container, but built with GPU support.
2828

2929
## Running the container
3030

3131
Each of the containers is published to a Docker registry; for the non-GPU
3232
containers, running is as simple as
3333

34-
$ docker run -it -p 8888:8888 b.gcr.io/tensorflow/tensorflow
34+
$ docker run -it -p 8888:8888 gcr.io/tensorflow/tensorflow
3535

3636
For the container with GPU support, we require the user to make the appropriate
3737
NVidia libraries available on their system, as well as providing mappings so
@@ -40,7 +40,7 @@ accomplished via
4040

4141
$ export CUDA_SO=$(\ls /usr/lib/x86_64-linux-gnu/libcuda.* | xargs -I{} echo '-v {}:{}')
4242
$ export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}')
43-
$ docker run -it -p 8888:8888 $CUDA_SO $DEVICES b.gcr.io/tensorflow/tensorflow-devel-gpu
43+
$ docker run -it -p 8888:8888 $CUDA_SO $DEVICES gcr.io/tensorflow/tensorflow-devel-gpu
4444

4545
Alternately, you can use the `docker_run_gpu.sh` script in this directory.
4646

0 commit comments

Comments
 (0)