forked from NVIDIA/cutlass
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdispatch_policy.hpp
692 lines (599 loc) · 30 KB
/
dispatch_policy.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
/***************************************************************************************************
* Copyright (c) 2023 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#pragma once
#include "cutlass/arch/arch.h"
#include "cutlass/gemm/gemm.h"
#include "cute/layout.hpp"
#include "cute/numeric/integral_constant.hpp" // cute::false_type
#include "cute/arch/copy_sm100.hpp"
//////////////////////////////////////////////////////////////////////////////
namespace cutlass::detail {
template <class T, template <int...> class U>
struct is_kernel_tag_of : cute::false_type {};
template <template <int...> class U, int... Args>
struct is_kernel_tag_of<U<Args...>, U> : cute::true_type {};
template <class T, template <int...> class U>
constexpr bool is_kernel_tag_of_v = is_kernel_tag_of<T, U>::value;
template <class T, template <int,bool> class U>
struct is_asymmetric_dma_kernel_tag_of : cute::false_type {};
template <template <int, bool> class U, int I0, bool B0>
struct is_asymmetric_dma_kernel_tag_of<U<I0, B0>, U> : cute::true_type {};
template <class T, template <int, bool> class U>
constexpr bool is_asymmetric_dma_kernel_tag_of_v = \
is_asymmetric_dma_kernel_tag_of<T, U>::value;
}
//////////////////////////////////////////////////////////////////////////////
namespace cutlass::gemm {
using namespace cute;
//////////////////////////////////////////////////////////////////////////////
namespace detail {
enum class KernelInputTransformType {
FastF32,
InterleavedComplexTF32
};
} // namespace detail
//////////////////////////////////////////////////////////////////////////////
namespace kernel::detail {
// Has_SwapAB<T>::value will be true only if:
// class T has member SwapAB and T::SwapAB is true
template <typename T, typename = void>
struct Has_SwapAB { static constexpr bool value = false; };
template <typename T>
struct Has_SwapAB <T, CUTE_STL_NAMESPACE::void_t<decltype(T::SwapAB)>>
{ static constexpr bool value = T::SwapAB; };
template <typename T>
static constexpr bool Has_SwapAB_v = Has_SwapAB<T>::value;
} // namespace kernel::detail
//////////////////////////////////////////////////////////////////////////////
//
// Kernel schedule policies (the base class tags, one for each kernel layer file)
//
struct KernelMultistage { };
struct KernelCpAsyncWarpSpecialized { };
struct KernelCpAsyncWarpSpecializedPingpong { };
struct KernelCpAsyncWarpSpecializedCooperative { };
struct KernelTma { };
struct KernelTmaWarpSpecialized { };
struct KernelTmaWarpSpecializedPingpong {
};
struct KernelTmaWarpSpecializedCooperative {
};
struct KernelPtrArrayTmaWarpSpecializedCooperative { };
struct KernelPtrArrayTmaWarpSpecializedPingpong { };
// FP8 related policies (including Blocked Scaled Accumulation)
template<
int ScaleGranularityM = 0 // `ScaleGranularityM` specifies scaling granularity along M, while zero-value `ScaleGranularityM` indicates that scaling granularity is `size<0>(TileShape_MNK{})` along M.
>
struct KernelTmaWarpSpecializedCooperativeFP8BlockScaledAccum: KernelTmaWarpSpecializedCooperative { };
// Policies to opt into mixed type GEMMs
struct KernelTmaWarpSpecializedMixedInput : KernelTmaWarpSpecialized { };
struct KernelTmaWarpSpecializedPingpongMixedInput : KernelTmaWarpSpecializedPingpong { };
struct KernelTmaWarpSpecializedCooperativeMixedInput: KernelTmaWarpSpecializedCooperative { };
//////////////////////////////////////////////////////////////////////////////
//
// Builder dispatch policies (not a part of the main CUTLASS layers, simply used to opt into
// specific collective builder dispatches)
//
// FP8 related policies (including Fast Accumulation)
struct KernelTmaWarpSpecializedFP8FastAccum : KernelTmaWarpSpecialized { };
struct KernelTmaWarpSpecializedPingpongFP8FastAccum : KernelTmaWarpSpecializedPingpong { };
struct KernelTmaWarpSpecializedCooperativeFP8FastAccum: KernelTmaWarpSpecializedCooperative { };
struct KernelPtrArrayTmaWarpSpecializedCooperativeFP8FastAccum : KernelPtrArrayTmaWarpSpecializedCooperative { };
struct KernelPtrArrayTmaWarpSpecializedPingpongFP8FastAccum : KernelPtrArrayTmaWarpSpecializedPingpong { };
//////////////////////////////////////////////////////////////////////////////
// Policies for dispatch of epilogue
struct EpilogueDefault { };
struct EpilogueTransposed { };
//////////////////////////////////////////////////////////////////////////////
//
// Collective Mainloop Policies
//
// 2 stage pipeline through 1 stage in smem, 1 in rmem, WITHOUT predicated gmem loads
struct MainloopSm70TwoStageUnpredicated {
constexpr static int Stages = 2;
using ArchTag = arch::Sm70;
using Schedule = KernelMultistage;
using ClusterShape = Shape<_1,_1,_1>;
};
// 2 stage pipeline through 1 stage in smem, 1 in rmem, with predicated gmem loads
struct MainloopSm70TwoStage {
constexpr static int Stages = 2;
using ArchTag = arch::Sm70;
using Schedule = KernelMultistage;
using ClusterShape = Shape<_1,_1,_1>;
};
// n-buffer in smem (cp.async), pipelined with registers, WITHOUT predicated gmem loads
template<int Stages_>
struct MainloopSm80CpAsyncUnpredicated {
constexpr static int Stages = Stages_;
using ArchTag = arch::Sm80;
using Schedule = KernelMultistage;
using ClusterShape = Shape<_1,_1,_1>;
};
// n-buffer in smem (cp.async), pipelined with registers, with predicated gmem loads
template<
int Stages_,
class ClusterShape_ = Shape<_1,_1,_1>
>
struct MainloopSm80CpAsync {
constexpr static int Stages = Stages_;
using ArchTag = cute::conditional_t<(size(ClusterShape_{}) > 1), arch::Sm90, arch::Sm80>;
using Schedule = KernelMultistage;
using ClusterShape = ClusterShape_;
};
// n-buffer in smem (cp.async), pipelined with Hopper GMMA, with predicated gmem loads, warp specialized dynamic schedule
template<
int Stages_,
class ClusterShape_ = Shape<_1,_1,_1>,
class KernelSchedule = KernelCpAsyncWarpSpecialized
>
struct MainloopSm90CpAsyncGmmaWarpSpecialized {
constexpr static int Stages = Stages_;
using ClusterShape = ClusterShape_;
using ArchTag = arch::Sm90;
using Schedule = KernelSchedule;
};
// n-buffer in smem (cp.async), pipelined with Hopper GMMA, with predicated gmem loads, warp specialized dynamic schedule
template<
int Stages_,
class ClusterShape_ = Shape<_1,_1,_1>,
class KernelSchedule = KernelCpAsyncWarpSpecialized
>
struct MainloopSm90CpAsyncGmmaRmemAWarpSpecialized {
constexpr static int Stages = Stages_;
using ClusterShape = ClusterShape_;
using ArchTag = arch::Sm90;
using Schedule = KernelSchedule;
};
// n-buffer in smem (Hopper TMA), pipelined with Hopper GMMA and TMA, static schedule between TMA and GMMA
template<
int Stages_,
class ClusterShape_ = Shape<_1,_1,_1>,
int PipelineAsyncMmaStages_ = 1
>
struct MainloopSm90TmaGmma {
constexpr static int Stages = Stages_;
using ClusterShape = ClusterShape_;
constexpr static int PipelineAsyncMmaStages = PipelineAsyncMmaStages_;
using ArchTag = arch::Sm90;
using Schedule = KernelTma;
};
// n-buffer in smem (Hopper TMA), pipelined with Hopper GMMA and TMA, Warp specialized dynamic schedule
template<
int Stages_,
class ClusterShape_ = Shape<_1,_1,_1>,
class KernelSchedule = KernelTmaWarpSpecializedCooperative
>
struct MainloopSm90TmaGmmaWarpSpecialized {
constexpr static int Stages = Stages_;
using ClusterShape = ClusterShape_;
using ArchTag = arch::Sm90;
using Schedule = KernelSchedule;
};
// n-buffer in smem (Hopper TMA), pipelined with Hopper GMMA and TMA, Warp specialized dynamic schedule
// With GMMA's A data from registers.
template<
int Stages_,
class ClusterShape_ = Shape<_1,_1,_1>,
class KernelSchedule = KernelTmaWarpSpecialized
>
struct MainloopSm90TmaGmmaRmemAWarpSpecialized {
constexpr static int Stages = Stages_;
using ClusterShape = ClusterShape_;
using ArchTag = arch::Sm90;
using Schedule = KernelSchedule;
static_assert(
cute::is_same_v<Schedule, KernelTmaWarpSpecialized> ||
cute::is_same_v<Schedule, KernelTmaWarpSpecializedPingpong> ||
cute::is_same_v<Schedule, KernelTmaWarpSpecializedCooperative>,
"KernelSchedule must be one of the warp specialized policies");
};
template<
int Stages_,
class ClusterShape_ = Shape<_1,_1,_1>,
class KernelSchedule = KernelTmaWarpSpecialized
>
struct MainloopSm90TmaGmmaRmemAWarpSpecializedMixedInput {
constexpr static int Stages = Stages_;
using ClusterShape = ClusterShape_;
using ArchTag = arch::Sm90;
using Schedule = KernelSchedule;
static_assert(
cute::is_same_v<Schedule, KernelTmaWarpSpecialized> ||
cute::is_same_v<Schedule, KernelTmaWarpSpecializedPingpong> ||
cute::is_same_v<Schedule, KernelTmaWarpSpecializedCooperative>,
"KernelSchedule must be one of the warp specialized policies");
};
// n-buffer in smem (Hopper TMA), pipelined with Hopper GMMA and TMA, Warp specialized dynamic schedule
// For FP8 kernels
template<
int Stages_,
class ClusterShape_ = Shape<_1,_1,_1>,
class KernelSchedule = KernelTmaWarpSpecialized
>
struct MainloopSm90TmaGmmaWarpSpecializedFP8
: MainloopSm90TmaGmmaWarpSpecialized<Stages_, ClusterShape_, KernelSchedule> {
static_assert(
cute::is_same_v<KernelSchedule, KernelTmaWarpSpecialized> ||
cute::is_same_v<KernelSchedule, KernelTmaWarpSpecializedPingpong> ||
cute::is_same_v<KernelSchedule, KernelTmaWarpSpecializedCooperative>,
"KernelSchedule must be one of the warp specialized policies");
};
// n-buffer in smem (Hopper TMA), pipelined with Hopper GMMA and TMA, Warp specialized dynamic schedule
// For FP8 kernels with Block Scaling
template<
int Stages_,
class ClusterShape_ = Shape<_1,_1,_1>,
class KernelSchedule = KernelTmaWarpSpecialized,
int ScaleGranularityM = 0 // `ScaleGranularityM` specifies scaling granularity along M, while zero-value `ScaleGranularityM` indicates that scaling granularity is `size<0>(TileShape_MNK{})` along M.
>
struct MainloopSm90TmaGmmaWarpSpecializedBlockScalingFP8
: MainloopSm90TmaGmmaWarpSpecialized<Stages_, ClusterShape_, KernelSchedule> {
static_assert(
cute::is_same_v<KernelSchedule, KernelTmaWarpSpecializedCooperativeFP8BlockScaledAccum<ScaleGranularityM>>,
"KernelSchedule must be one of the warp specialized policies");
};
// n-buffer in smem (Hopper TMA), pipelined with Hopper GMMA and TMA, Warp specialized dynamic schedule for Ptr-Array and Grouped Gemm
template<
int Stages_,
class ClusterShape_ = Shape<_1,_1,_1>,
class KernelSchedule = KernelPtrArrayTmaWarpSpecializedCooperative
>
struct MainloopSm90ArrayTmaGmmaWarpSpecialized {
constexpr static int Stages = Stages_;
using ClusterShape = ClusterShape_;
using ArchTag = arch::Sm90;
using Schedule = KernelSchedule;
static_assert(
cute::is_base_of_v<KernelPtrArrayTmaWarpSpecializedCooperative, KernelSchedule> ||
cute::is_base_of_v<KernelPtrArrayTmaWarpSpecializedPingpong, KernelSchedule>,
"KernelSchedule must be one of the Ptr-Array or Grouped Gemm TMA Warp Specialized Cooperative or Pingpong policies");
};
// n-buffer in smem (Hopper TMA), pipelined with Hopper sparse GMMA and TMA, Warp specialized dynamic schedule
template<
int Stages_,
class ClusterShape_ = Shape<_1,_1,_1>,
class KernelSchedule = KernelTmaWarpSpecializedCooperative
>
struct MainloopSm90TmaGmmaWarpSpecializedSparse {
constexpr static int Stages = Stages_;
using ClusterShape = ClusterShape_;
using ArchTag = arch::Sm90;
using Schedule = KernelSchedule;
};
// For slow-accumulation sparse FP8 kernels
template<
int Stages,
class ClusterShape = Shape<_1,_1,_1>,
class KernelSchedule = KernelTmaWarpSpecializedCooperative
>
struct MainloopSm90TmaGmmaWarpSpecializedSparseFP8
: MainloopSm90TmaGmmaWarpSpecializedSparse<Stages, ClusterShape, KernelSchedule> {
};
// Mixed precision version n-buffer in rmem (Hopper TMA), pipelined with Hopper GMMA and TMA, Warp specialized dynamic schedule for Ptr-Array and Grouped Gemm
template<
int Stages_,
class ClusterShape_ = Shape<_1,_1,_1>,
class KernelSchedule = KernelPtrArrayTmaWarpSpecializedCooperative
>
struct MainloopSm90ArrayTmaGmmaWarpSpecializedMixedInput {
constexpr static int Stages = Stages_;
using ClusterShape = ClusterShape_;
using ArchTag = arch::Sm90;
using Schedule = KernelSchedule;
static_assert(
cute::is_same_v<Schedule, KernelPtrArrayTmaWarpSpecializedCooperative> ||
cute::is_same_v<Schedule, KernelPtrArrayTmaWarpSpecializedPingpong>,
"KernelSchedule must be one of the Ptr-Array or Grouped Gemm TMA Warp Specialized Cooperative policies");
};
template<
int SchedulerPipelineStageCount_,
int AccumulatorPipelineStageCount_
>
struct KernelTmaWarpSpecializedSm100 final {
static constexpr int SchedulerPipelineStageCount = SchedulerPipelineStageCount_;
static constexpr int AccumulatorPipelineStageCount = AccumulatorPipelineStageCount_;
};
// Gemm with block scaling factors
template<
int SchedulerPipelineStageCount_,
int AccumulatorPipelineStageCount_
>
struct KernelTmaWarpSpecializedBlockScaledSm100 final {
static constexpr int SchedulerPipelineStageCount = SchedulerPipelineStageCount_;
static constexpr int AccumulatorPipelineStageCount = AccumulatorPipelineStageCount_;
};
// InputTransform GEMM
template<
int SchedulerPipelineStageCount_,
int AccumulatorPipelineStageCount_
>
struct KernelTmaWarpSpecializedInputTransformSm100 final {
static constexpr int SchedulerPipelineStageCount = SchedulerPipelineStageCount_;
static constexpr int AccumulatorPipelineStageCount = AccumulatorPipelineStageCount_;
};
// Ptr-Array Dense GEMM: SM100 tensor op policy that applies to both 1SM and 2SM MMA atoms
template<
int SchedulerPipelineStageCount_,
int AccumulatorPipelineStageCount_
>
struct KernelPtrArrayTmaWarpSpecializedSm100 final {
static constexpr int SchedulerPipelineStageCount = SchedulerPipelineStageCount_;
static constexpr int AccumulatorPipelineStageCount = AccumulatorPipelineStageCount_;
};
// Ptr-Array Block Scaled GEMM
template<
int SchedulerPipelineStageCount_,
int AccumulatorPipelineStageCount_
>
struct KernelPtrArrayTmaWarpSpecializedBlockScaledSm100 final {
static constexpr int SchedulerPipelineStageCount = SchedulerPipelineStageCount_;
static constexpr int AccumulatorPipelineStageCount = AccumulatorPipelineStageCount_;
};
// Ptr-Array InputTransform GEMM
template<
int SchedulerPipelineStageCount_,
int AccumulatorPipelineStageCount_
>
struct KernelPtrArrayTmaWarpSpecializedInputTransformSm100 final {
static constexpr int SchedulerPipelineStageCount = SchedulerPipelineStageCount_;
static constexpr int AccumulatorPipelineStageCount = AccumulatorPipelineStageCount_;
};
//////////////////////////////////////////////////////////////////////////////
//
// Collective Builder Tag Property
//
///////////////////////////////////////////////////////////////////////////////////////////////////////
//
// SM100 Dispatch Policies
//
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Base Dispatch Policies
struct KernelSchedule1Sm {};
struct KernelSchedule2Sm {};
struct KernelScheduleSm100 {};
///////////////////////////////////////////////////////////////////////////////////////////////////////
// SM100 Dense GEMM Dispatch Policies
///////////////////////////////////////////////////////////////////////////////////////////////////////
struct KernelScheduleSm100DenseGemm : KernelScheduleSm100 {}; // Base policy
// Dense GEMM: Specialize for 1SM vs 2SM
struct KernelTmaWarpSpecialized1SmSm100 final : KernelSchedule1Sm, KernelScheduleSm100DenseGemm {}; // Use for 1SM Dense GEMM Kernels for Collective Mainloop Builder
struct KernelTmaWarpSpecialized2SmSm100 final : KernelSchedule2Sm, KernelScheduleSm100DenseGemm {}; // Use for 2SM Dense GEMM Kernels for Collective Mainloop Builder
// Dense GEMM + (Ptr Array or Group GEMM)
struct KernelScheduleSm100PtrArrayDenseGemm : KernelScheduleSm100DenseGemm {};
// Ptr-Array Dense GEMM: Specialize for 1SM vs 2SM
struct KernelPtrArrayTmaWarpSpecialized1SmSm100 final : KernelSchedule1Sm, KernelScheduleSm100PtrArrayDenseGemm {};
struct KernelPtrArrayTmaWarpSpecialized2SmSm100 final : KernelSchedule2Sm, KernelScheduleSm100PtrArrayDenseGemm {};
///////////////////////////////////////////////////////////////////////////////////////////////////////
// SM100 Planar Complex GEMM Dispatch Policies
///////////////////////////////////////////////////////////////////////////////////////////////////////
struct KernelScheduleSm100PlanarComplexGemm : KernelScheduleSm100{};
// Planar Complex GEMM: Specialize for 1SM vs 2SM
struct KernelTmaWarpSpecialized1SmPlanarComplexSm100 final : KernelSchedule1Sm, KernelScheduleSm100PlanarComplexGemm { };
struct KernelTmaWarpSpecialized2SmPlanarComplexSm100 final : KernelSchedule2Sm, KernelScheduleSm100PlanarComplexGemm { };
// Planar Complex GEMM + (Ptr Array or Group GEMM)
struct KernelScheduleSm100PtrArrayPlanarComplexGemm : KernelScheduleSm100PlanarComplexGemm {};
struct KernelPtrArrayTmaWarpSpecialized1SmPlanarComplexSm100 final : KernelSchedule1Sm, KernelScheduleSm100PtrArrayPlanarComplexGemm {};
struct KernelPtrArrayTmaWarpSpecialized2SmPlanarComplexSm100 final : KernelSchedule2Sm, KernelScheduleSm100PtrArrayPlanarComplexGemm {};
///////////////////////////////////////////////////////////////////////////////////////////////////////
// SM100 FastF32 (9xBF16) GEMM Dispatch Policies
///////////////////////////////////////////////////////////////////////////////////////////////////////
struct KernelScheduleSm100FastFP32Gemm : KernelScheduleSm100 {};
struct KernelTmaWarpSpecializedFastFP32SmemSm100 : KernelScheduleSm100FastFP32Gemm { };
// Dispatch policies without smem load the A operand from tmem
struct KernelTmaWarpSpecialized1SmFastFP32Sm100 final : KernelSchedule1Sm, KernelScheduleSm100FastFP32Gemm { };
struct KernelTmaWarpSpecialized2SmFastFP32Sm100 final : KernelSchedule2Sm, KernelScheduleSm100FastFP32Gemm { };
// Dispatch policies with smem load the A operand from smem
struct KernelTmaWarpSpecialized1SmFastFP32SmemSm100 final : KernelSchedule1Sm, KernelTmaWarpSpecializedFastFP32SmemSm100 { };
struct KernelTmaWarpSpecialized2SmFastFP32SmemSm100 final : KernelSchedule2Sm, KernelTmaWarpSpecializedFastFP32SmemSm100 { };
// Ptr-Array Transform GEMM: Specialize for 1SM vs 2SM FastF32 GEMM
struct KernelScheduleSm100PtrArrayFastFP32Gemm : KernelScheduleSm100FastFP32Gemm {};
struct KernelTmaWarpSpecializedPtrArrayFastFP32SmemSm100 : KernelScheduleSm100PtrArrayFastFP32Gemm { };
struct KernelPtrArrayTmaWarpSpecialized1SmFastFP32Sm100 final : KernelSchedule1Sm, KernelScheduleSm100PtrArrayFastFP32Gemm { };
struct KernelPtrArrayTmaWarpSpecialized2SmFastFP32Sm100 final : KernelSchedule2Sm, KernelScheduleSm100PtrArrayFastFP32Gemm { };
struct KernelPtrArrayTmaWarpSpecialized1SmFastFP32SmemSm100 final : KernelSchedule1Sm, KernelTmaWarpSpecializedPtrArrayFastFP32SmemSm100 { };
struct KernelPtrArrayTmaWarpSpecialized2SmFastFP32SmemSm100 final : KernelSchedule2Sm, KernelTmaWarpSpecializedPtrArrayFastFP32SmemSm100 { };
///////////////////////////////////////////////////////////////////////////////////////////////////////
// SM100 BlockScaled Dense GEMM Dispatch Policies
///////////////////////////////////////////////////////////////////////////////////////////////////////
struct KernelScheduleBlockScaledGemmSm100 : KernelScheduleSm100 {};
struct KernelScheduleMxNvf4Sm100 : KernelScheduleBlockScaledGemmSm100 {};
struct KernelScheduleMxf8f6f4Sm100 : KernelScheduleBlockScaledGemmSm100 {};
// Block Scaled Dense GEMM: Specialize for instruction type, scale factor vector size, and 1SM vs. 2SM
struct KernelTmaWarpSpecialized1SmBlockScaledSm100 final : KernelSchedule1Sm, KernelScheduleBlockScaledGemmSm100 { };
struct KernelTmaWarpSpecialized2SmBlockScaledSm100 final : KernelSchedule2Sm, KernelScheduleBlockScaledGemmSm100 { };
struct KernelTmaWarpSpecialized1SmNvf4Sm100 final : KernelSchedule1Sm, KernelScheduleMxNvf4Sm100 { };
struct KernelTmaWarpSpecialized2SmNvf4Sm100 final : KernelSchedule2Sm, KernelScheduleMxNvf4Sm100 { };
struct KernelTmaWarpSpecialized1SmMxf4Sm100 final : KernelSchedule1Sm, KernelScheduleMxNvf4Sm100 { };
struct KernelTmaWarpSpecialized2SmMxf4Sm100 final : KernelSchedule2Sm, KernelScheduleMxNvf4Sm100 { };
struct KernelTmaWarpSpecialized1SmMxf8f6f4Sm100 final : KernelSchedule1Sm, KernelScheduleMxf8f6f4Sm100 { };
struct KernelTmaWarpSpecialized2SmMxf8f6f4Sm100 final : KernelSchedule2Sm, KernelScheduleMxf8f6f4Sm100 { };
// BlockScaled Dense GEMM + (Ptr Array or Group GEMM)
struct KernelSchedulePtrArrayBlockScaledGemmSm100 : KernelScheduleBlockScaledGemmSm100 {};
struct KernelSchedulePtrArrayMxNvf4Sm100 : KernelSchedulePtrArrayBlockScaledGemmSm100 {};
struct KernelSchedulePtrArrayMxf8f6f4Sm100 : KernelSchedulePtrArrayBlockScaledGemmSm100 {};
// Ptr-Array Block Scaled Dense GEMM: Specialize for instruction type, scale factor vector size, and 1SM vs. 2SM
struct KernelPtrArrayTmaWarpSpecialized1SmBlockScaledSm100 final : KernelSchedule1Sm, KernelSchedulePtrArrayBlockScaledGemmSm100 { };
struct KernelPtrArrayTmaWarpSpecialized2SmBlockScaledSm100 final : KernelSchedule2Sm, KernelSchedulePtrArrayBlockScaledGemmSm100 { };
struct KernelPtrArrayTmaWarpSpecialized1SmNvf4Sm100 final : KernelSchedule1Sm, KernelSchedulePtrArrayMxNvf4Sm100 { };
struct KernelPtrArrayTmaWarpSpecialized2SmNvf4Sm100 final : KernelSchedule2Sm, KernelSchedulePtrArrayMxNvf4Sm100 { };
struct KernelPtrArrayTmaWarpSpecialized1SmMxf4Sm100 final : KernelSchedule1Sm, KernelSchedulePtrArrayMxNvf4Sm100 { };
struct KernelPtrArrayTmaWarpSpecialized2SmMxf4Sm100 final : KernelSchedule2Sm, KernelSchedulePtrArrayMxNvf4Sm100 { };
struct KernelPtrArrayTmaWarpSpecialized1SmMxf8f6f4Sm100 final : KernelSchedule1Sm, KernelSchedulePtrArrayMxf8f6f4Sm100 { };
struct KernelPtrArrayTmaWarpSpecialized2SmMxf8f6f4Sm100 final : KernelSchedule2Sm, KernelSchedulePtrArrayMxf8f6f4Sm100 { };
// n-buffer in smem, pipelined with Blackwell UMMA and TMA, Warp specialized dynamic schedule
template<
int Stages_,
int SchedulerPipelineStageCount_,
int AccumulatorPipelineStageCount_,
class ClusterShape_ = Shape<_1,_1,_1>
>
struct MainloopSm100TmaUmmaWarpSpecialized {
constexpr static int Stages = Stages_;
using ClusterShape = ClusterShape_;
using ArchTag = arch::Sm100;
using Schedule = KernelTmaWarpSpecializedSm100<SchedulerPipelineStageCount_, AccumulatorPipelineStageCount_>;
constexpr static bool IsOverlappingAccum = false;
};
// n-buffer in smem, pipelined with Blackwell UMMA and TMA, Warp specialized dynamic schedule
template<
int Stages_,
int SchedulerPipelineStageCount_,
int AccumulatorPipelineStageCount_,
class ClusterShape_ = Shape<_1,_1,_1>
>
struct MainloopSm100TmaUmmaWarpSpecializedBlockScaled {
constexpr static int Stages = Stages_;
using ClusterShape = ClusterShape_;
using ArchTag = arch::Sm100;
constexpr static bool IsOverlappingAccum = AccumulatorPipelineStageCount_ == 1;
using Schedule = KernelTmaWarpSpecializedBlockScaledSm100<SchedulerPipelineStageCount_, AccumulatorPipelineStageCount_>;
};
// n-buffer in smem, pipelined with Blackwell Fast FP32 kernel with UMMA (HwScaled) and TMA,
// Warp specialized dynamic schedule
template<
// Number of Pipeline stages for
// MainloopLoad <-> Conversion <-> MainLoad
int Load2TransformPipelineStageCount_,
// Number of Pipeline stages for
// MainloopLoad <-> Conversion <-> MainLoad
int Transform2MmaPipelineStageCount_,
// TileScheduler pipeline depth
int SchedulerPipelineStageCount_,
// Accmulator pipeline depth
int AccumulatorPipelineStageCount_,
// Number of MMA Bands to be computed in a single FastF32 MMA operation.
// For BF16 emulation, we have 3 compute matrices, with 9 MMAs forming 5 bands.
// We can eliminate bands 4 and/or 5 (up to last 3 MMA operations).
// Valid values are 3, 4, 5
int NumBandsToCompute_,
// Scaling factor for decomposed matrices (2^ScalingFactor)
// 8 for BF16, 11 for TF32
int ScalingFactor_,
// Number of UMMA instructions emulated a single stage
// Ex: Staged16 has 1 FastF32 MMA per stage
// Should be smaller than K-mode of a single ClusterTile
int AccPromotionInterval_,
// ClusterShape for the kernel
class ClusterShape_ = Shape<_1,_1,_1>,
// The TMEM_LOAD atom to be used for loading local accumulator
// from TMEM to registers
class AccumulatorCopyAtom_ = cute::SM100_TMEM_LOAD_32dp32b32x
>
struct MainloopSm100TmaUmmaWarpSpecializedFastF32 {
constexpr static int Load2TransformPipelineStageCount = Load2TransformPipelineStageCount_;
constexpr static int Transform2MmaPipelineStageCount = Transform2MmaPipelineStageCount_;
constexpr static int NumBandsToCompute = NumBandsToCompute_;
constexpr static int ScalingFactor = ScalingFactor_;
constexpr static int AccPromotionInterval = AccPromotionInterval_;
constexpr static detail::KernelInputTransformType InputTransformType = detail::KernelInputTransformType::FastF32;
using ClusterShape = ClusterShape_;
using AccumulatorCopyAtom = AccumulatorCopyAtom_;
using ArchTag = arch::Sm100;
using Schedule = KernelTmaWarpSpecializedInputTransformSm100<SchedulerPipelineStageCount_, AccumulatorPipelineStageCount_>;
// For backwards compatibility with GemmUniversalAdapter.
constexpr static int Stages = Load2TransformPipelineStageCount;
};
// n-buffer in smem, pipelined with Blackwell UMMA and TMA, Warp specialized dynamic schedule
template<
int Stages_,
int SchedulerPipelineStageCount_,
int AccumulatorPipelineStageCount_,
class ClusterShape_ = Shape<_1,_1,_1>
>
struct MainloopSm100ArrayTmaUmmaWarpSpecialized {
constexpr static int Stages = Stages_;
using ClusterShape = ClusterShape_;
using ArchTag = arch::Sm100;
constexpr static bool IsOverlappingAccum = false;
using Schedule = KernelPtrArrayTmaWarpSpecializedSm100<SchedulerPipelineStageCount_, AccumulatorPipelineStageCount_>;
};
// n-buffer in smem, pipelined with Blackwell UMMA and TMA, Warp specialized dynamic schedule
template<
int Stages_,
int SchedulerPipelineStageCount_,
int AccumulatorPipelineStageCount_,
class ClusterShape_ = Shape<_1,_1,_1>
>
struct MainloopSm100ArrayTmaUmmaWarpSpecializedBlockScaled {
constexpr static int Stages = Stages_;
using ClusterShape = ClusterShape_;
using ArchTag = arch::Sm100;
constexpr static bool IsOverlappingAccum = AccumulatorPipelineStageCount_ == 1;
using Schedule = KernelPtrArrayTmaWarpSpecializedBlockScaledSm100<SchedulerPipelineStageCount_, AccumulatorPipelineStageCount_>;
};
// n-buffer in smem, pipelined with Blackwell Fast FP32 kernel with UMMA (HwScaled) and TMA,
// Warp specialized dynamic schedule
template<
// Number of Pipeline stages for
// MainloopLoad <-> Conversion <-> MainLoad
int Load2TransformPipelineStageCount_,
// Number of Pipeline stages for
// MainloopLoad <-> Conversion <-> MainLoad
int Transform2MmaPipelineStageCount_,
// TileScheduler pipeline depth
int SchedulerPipelineStageCount_,
// Accmulator pipeline depth
int AccumulatorPipelineStageCount_,
// Number of MMA Bands to be computed in a single FastF32 MMA operation.
// For BF16 emulation, we have 3 compute matrices, with 9 MMAs forming 5 bands.
// We can eliminate bands 4 and/or 5 (up to last 3 MMA operations).
// Valid values are 3, 4, 5
int NumBandsToCompute_,
// Scaling factor for decomposed matrices (2^ScalingFactor)
// 8 for BF16, 11 for TF32
int ScalingFactor_,
// Number of UMMA instructions emulated a single stage
// Ex: Staged16 has 1 FastF32 MMA per stage
// Should be smaller than K-mode of a single ClusterTile
int AccPromotionInterval_,
// ClusterShape for the kernel
class ClusterShape_ = Shape<_1,_1,_1>,
// The TMEM_LOAD atom to be used for loading local accumulator
// from TMEM to registers
class AccumulatorCopyAtom_ = cute::SM100_TMEM_LOAD_32dp32b32x
>
struct MainloopSm100ArrayTmaUmmaWarpSpecializedFastF32 {
constexpr static int Load2TransformPipelineStageCount = Load2TransformPipelineStageCount_;
constexpr static int Transform2MmaPipelineStageCount = Transform2MmaPipelineStageCount_;
constexpr static int NumBandsToCompute = NumBandsToCompute_;
constexpr static int ScalingFactor = ScalingFactor_;
constexpr static int AccPromotionInterval = AccPromotionInterval_;
constexpr static detail::KernelInputTransformType InputTransformType = detail::KernelInputTransformType::FastF32;
using ClusterShape = ClusterShape_;
using AccumulatorCopyAtom = AccumulatorCopyAtom_;
using ArchTag = arch::Sm100;
using Schedule = KernelPtrArrayTmaWarpSpecializedInputTransformSm100<SchedulerPipelineStageCount_, AccumulatorPipelineStageCount_>;
// For backwards compatibility with GemmUniversalAdapter.
constexpr static int Stages = Load2TransformPipelineStageCount;
};
//////////////////////////////////////////////////////////////////////////////
} // namespace cutlass::gemm