forked from datacarpentry/r-socialsci
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathR-handout.Rmd
934 lines (708 loc) · 25.8 KB
/
R-handout.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
---
title: Code Handout - R for Social Scientists
output:
html_document:
df_print: paged
code_download: yes
---
```{r, include=FALSE}
knitr::opts_chunk$set(fig.width = 3, fig.height = 3, message = FALSE, warning = FALSE, eval = FALSE)
```
This document contains all of the core functions that were covered in the R for Social Scientists workshop.
Each function is presented alongside an example of
how it can be used. It is split into the following 4 sections:
- Introduction to R
- Starting with Data
- Data Wrangling
- Data Visualization
Each section has instructions to load all necessary libraries or data, so you can start from any of the 4 points linked above.
## Introduction to R
The first section covers core programming concepts and functions in Base R and does not require any data or libraries to be loaded.
### Creating Objects
- `<-` -- "assignment arrow", assigns a value (vector, dataframe, single value) to the name of a variable
```{r}
x <- 3
```
- `c()` -- the "concatenate" function combines inputs to form a vector, the
values have to be the same data type.
```{r}
animals <- c("bird", "cat", "dog")
numbers <- c(1, 14, 57, 89)
logicals <- c(TRUE, FALSE, TRUE, TRUE)
```
- `+` -- addition and other mathematical operators can be repeated on every value
in a vector.
```{r}
y <- c(1, 2, 3)
z <- x + y
```
### Inspecting Objects
- `str()` -- compact display of the structure of an R object
```{r}
str(animals)
```
- `class()` -- returns the type of element of any R object
```{r}
class(logicals)
```
- `typeof()` -- returns the data type or storage mode of any R object
```{r}
typeof(numbers)
```
### Functions in R
- `args()` -- returns the arguments of a function
```{r}
args(round)
```
- named arguments -- the name of the argument the function expects
- You can choose to not name your arguments, **if** you know the **exact**
order they should be in!
- However, we generally discourage this.
- `round()` -- round a decimal or fraction to a specified number of digits
```{r}
# Either of these work, since the digits argument is named explicitly.
round(3.14159, digits = 2)
round(digits = 2, 3.14159)
# This does not work, since the arguments are not named and in the incorrect order.
round(2, 3.14159)
```
### Functions to Summarize Data
- `sqrt()` -- returns the square root of a numeric variable
```{r}
sqrt(numbers)
```
- `mean()` -- returns the mean of a numeric variable
- You can add the `na.rm` argument, to remove `NA` values before calculating
the mean.
```{r}
mean(numbers)
```
- `max()` -- returns the maximum of a numeric variable
- You can add the `na.rm` argument, to remove `NA` values before calculating
the max.
```{r}
max(numbers)
```
- `sum()` -- returns the sum of a numeric variable
- You can add the `na.rm` argument, to remove `NA` values before calculating
the sum.
```{r}
sum(numbers)
```
- `length()` -- returns the length of a vector (of any datatype)
```{r}
length(animals)
```
- Additional summary functions include:
- `var()` -- find the variance of a numerical variable
- `sd()` -- finds the standard deviation of a numerical variable
- `IQR()` -- find the innerquartile range (Q3 - Q1) of a numerical variable
- `median()` -- finds the median of a numerical variable
### Subsetting Data
- `[]` -- used to subset elements from a vector
- `X:Y` -- used to retrieve a "slice" of a vector starting at X and continuing through Y
```{r}
animals[3]
# selects the third element
animals[2:3]
# selects the second and third element
animals[c(1, 3)]
# selects the first and third element
```
- relational operators -- return logical values indicating where a relation is
satisfied. The most commonly used logical operators for data analysis are as follows:
- `==` means "equal to"
- `!=` means "not equal to"
- `>` or `<` means "greater than" or "less than"
- `>=` or `<=` means "greater than or equal to" or "less than or equal to"
```{r}
animals == "dog"
animals != "cat"
numbers > 4
numbers <= 12
```
- logical operators -- join subset criteria together
- `&` means "and" -- where two criteria must **both** be satisfied
- `|` means "or" -- where at least one criteria must be satisfied
```{r}
numbers > 4 & numbers < 20
animals == "dog" | animals == "cat"
```
- `%in%` -- the "inclusion operator", allows you to test if any of the elements
of a search vector (on the left hand side) are found in the target vector (on
the right hand side).
- The levels of the target vector must be included in a vector (`c()`).
```{r}
possessions <- c("car", "bicycle", "radio", "television", "mobile_phone")
possessions %in% c("car", "bicycle", "motorcycle")
```
### Missing Data
- `is.na()` -- returns a vector of logical values indicating which elements of
a vector have `NA` values
- Often combined with `!`, where the `!` negates the previous statement (e.g.
`!TRUE` is equal to `FALSE`).
```{r}
missing <- c(1, 3, NA, 7, 12, NA)
is.na(missing)
!is.na(missing)
```
- `na.omit()` -- removes the observations with `NA` values
```{r}
na.omit(missing)
```
- `complete.cases()` -- returns a vector of logical values indicating which
elements of a vector **are not** missing (`NA`) values
```{r}
complete.cases(missing)
```
## Starting with Data
In this section, we begin working with data.
All data examples are in the context of the Palmer Penguins, found
[here (link)](https://allisonhorst.github.io/palmerpenguins/index.html).
### Packages
Packages (also called libraries) expand the capabilities of R beyond the functions that come when you install it. Each needs to be downloaded and installed only once but loaded into each R session.
- `install.packages()` -- install a new package
- `library()` -- loads packages into your `R` session
```{r, message=FALSE, warning=FALSE}
# Install packages (not run)
# Delete `#` from lines below if missing packages
#install.packages("tidyverse")
#install.packages("lubridate")
#install.packages("palmerpenguins")
# Load libraries
library(tidyverse)
library(lubridate)
library(palmerpenguins) #load Palmer Penguins data as `penguins`
```
### Inspecting Data
- `dim()` - returns a vector with the number of rows as the first element,
and the number of columns as the second element (the **dim**ensions of
the object)
```{r}
dim(penguins)
```
- `nrow()` - returns the number of rows
- `ncol()` - returns the number of columns
```{r}
nrow(penguins)
ncol(penguins)
```
- `head()` - displays the first 6 rows of the dataframe
- `tail()` - displays the last 6 rows of the dataframe
```{r}
head(penguins)
tail(penguins)
```
- `names()` - returns the all of the names of an object (both row and column)
- `colnames()` - returns column names for dataframes (without row names)
```{r}
names(penguins)
colnames(penguins)
```
- `glimpse()` - provides a preview of the data, where column names are presented
with their associated data types, and the entries from each column are printed
in each row
```{r}
glimpse(penguins)
```
- `str()` - returns the structure of the object and information about the class,
the names and data types of each column, and a preview of the first entries of
each column
```{r}
str(penguins)
```
- `summary()` - provides summary statistics for each column
- Note: summary statistics for character variables are not meaningful, as they
simply state the number of observations (length) of the variable
```{r}
summary(penguins)
```
### Subsetting Data in Dataframes
- `[]` -- selects rows and columns from a dataframe
- The first entry is the row number, the second entry is the column number(s),
and they are separated with a comma.
```{r}
# Selects the element in the first row, second column
penguins[1, 2]
# Selects every element in the fourth row
penguins[4, ]
# Selects every element in the third column
penguins[, 3]
```
- `[[]]` -- selects a column from a dataframe
- Inside the brackets you can pass either the number of the column or the
name of the column (in quotations)
```{r}
penguins[[1]]
penguins[["island"]]
```
- `$` -- selects a column from a dataframe, where the name of the dataframe is
on the left and the name of the column is on the right
```{r}
penguins$body_mass_g
```
### Working with Different Data Types
- `factor()` -- creates a categorical variable from a character or numeric
variable, variable has a factor datatype
- the values (level) of the factor levels is specified in the `levels`
argument, where the levels must be specified in a vector (using `c()`)
- Note: the order you wish for the levels to appear is how you should list
them in the `levels` argument, you can also specify `ordered = TRUE` to
ensure the levels remain in this order
```{r}
penguins$year_fct <- factor(penguins$year,
levels = c("2007", "2008", "2009"),
ordered = TRUE)
```
- `as.factor()` -- creates a categorical variable from a character or numeric
variable, variable has a factor datatype
- does not allow for you to specify the order of the levels
- defaults to alphabetical ordering for factor levels
```{r}
penguins$year_fct <- as.factor(penguins$year)
```
- `levels()` -- returns the levels of a factor variable in the
order they were stored
- Note: this function will not work for character variables
```{r}
levels(penguins$year_fct)
```
- `nlevels()` -- returns the number of levels of a factor variable
- Note: this function will not work for character variables
```{r}
nlevels(penguins$year_fct)
```
- `as.character()` -- creates a character variable from a numeric or factor
variable
```{r}
penguins$species_chr <- as.character(penguins$species)
```
- `ymd()` -- transforms dates stored as character or numeric variables to dates
- Note: to use this function, dates must be stored in year-month-day format
- The function does well with heterogeneous formats (as seen below), but
formats where some of the entries are not in double digits may not be parsed
correctly.
```{r}
x <- c("2009-01-01", "2009-01-02", "2009-01-03")
ymd(x)
```
- `day()` -- extracts the day (number) of a date variable
```{r}
day(x)
```
- `month()` -- extracts the month (number) of a date variable
```{r}
month(x)
```
- `year()` -- extracts the year of a date variable
```{r}
year(x)
```
### Basic Data Visualization (see Data Visualization section for more)
- `plot()` -- a generic function for plotting R objects
- In this lesson `plot()` was used to create bargraphs of categorical
variables.
```{r}
plot(penguins$species)
```
## Data Wrangling
This section continues using the [Palmer Penguins data](https://allisonhorst.github.io/palmerpenguins/index.html) and introduces concepts and functions to explore, clean and summarize data, many of which come from the `dplyr` and `plyr` tidyverse libraries.
### Packages
- `library()` -- loads packages into your `R` session
```{r, message=FALSE, warning=FALSE}
library(tidyverse)
library(palmerpenguins)
```
### Inspecting Data
- `glimpse()` -- shows a summary of the dataset, the number of rows and columns,
variable names, and the first 10 entries of each variable
```{r}
glimpse(penguins)
```
### Verbs of Data Wrangling
- `%>%` -- the "pipe" operator, joins sequences of data wrangling steps together,
works with any function that has `data = ` as the first argument
- `select()` -- selects variables (columns) from a dataframe
```{r}
penguins %>%
select(species)
```
- `filter()` -- filters observations (rows) out of / into a dataframe, where
the inputs (arguments) are the conditions to be satisfied in the data that are
kept
**Logical operators:** Filtering for certain observations (e.g. flights from a
particular airport) is often of interest in data frames where we might want to
examine observations with certain characteristics separately from the rest of
the data. To do so, you can use the `filter` function and a series of **logical
operators**. The most commonly used logical operators for data analysis are as
follows:
- `==` means "equal to"
- `!=` means "not equal to"
- `>` or `<` means "greater than" or "less than"
- `>=` or `<=` means "greater than or equal to" or "less than or equal to"
```{r}
# It's nice to have a new line for each condition, so your code is easier to read!
penguins %>%
filter(species == "Adelie",
body_mass_g > 3000,
year == 2008)
```
- `mutate()` -- creates new variables or modifies existing variables
```{r}
penguins %>%
filter(is.na(bill_length_mm) != TRUE,
is.na(bill_depth_mm) != TRUE) %>%
mutate(body_mass_kg = body_mass_g / 1000)
```
- `group_by()` -- groups the dataframe based on levels of a categorical variable,
usually used alongside `summarize()`
```{r, eval=FALSE}
penguins %>%
group_by(island)
```
- summarize()`-- creates data summaries of variables in a dataframe, for grouped summaries use alongside`group\_by()\`
```{r}
penguins %>%
filter(is.na(body_mass_g) != TRUE) %>%
group_by(island) %>%
summarize(mean_mass = mean(body_mass_g))
```
- `ungroup()` -- removes the grouping of a dataframe, typically used after group
summaries when additional ungrouped operations are required
```{r}
penguins %>%
filter(is.na(body_mass_g) != TRUE) %>%
group_by(island) %>%
summarize(mean_mass = mean(body_mass_g)) %>%
ungroup()
```
- `arrange()` -- orders a dataframe based on the values of a numerical variable,
paired with `desc()` to order in descending order
```{r}
penguins %>%
filter(is.na(body_mass_g) != TRUE) %>%
group_by(island) %>%
summarize(mean_mass = mean(body_mass_g)) %>%
arrange(desc(mean_mass))
```
Chain multiple operations together with `%>%` to create specific outputs without extra steps or dataframes being created along the way.
```{r}
penguins %>%
select(species, island, body_mass_g, sex, year) %>%
filter(island == "Torgersen",
is.na(body_mass_g) != TRUE) %>%
group_by(species, year) %>%
summarize(mean_mass = mean(body_mass_g),
median_mass = median(body_mass_g),
observations = n()) %>%
arrange(desc(mean_mass))
```
### Other Data Wrangling Tools
- `count()` -- counts the number of observations (rows) of the different levels
of a categorical variable
- can add `sort = TRUE` to sort the table in descending order (similar to
using `arrange(desc())` )
```{r}
penguins %>%
count(species)
```
- `sample_n()` -- selects $n$ rows from the dataframe, based on the value of
`size` specified
```{r}
penguins %>%
sample_n(size = 10)
```
- `replace_na()` -- replaces NA values with the value specified
- The values to be replaced must be passed to the function (input) as a
`list()` object.
```{r}
penguins %>%
replace_na(list(bill_length_mm = "no_measurement",
bill_depth_mm = "no_measurement")) %>%
glimpse()
```
- `separate_rows()` -- separates a variable with multiple values based on the
delimiter specified.
- Variables whose entries are stored as a list with commas or semicolons are
great candidates for this function!
- `rowSums()` -- forms row sums for numeric variables
- Note: In the lesson `rowSums()` was used on a `logical` variable, because
logical values can be numerically represented as 0 (FALSE) and 1 (TRUE)
```{r}
x <- tibble(x1 = 3, x2 = c(4:1, 2:5))
rowSums(x)
```
### Pivoting Dataframes
- `pivot_wider()` -- transforms a dataframe from long to wide format
- takes three principal arguments:
1. the *data* (often passed by a `%>%`)
2. the *names\_from* column variable whose values will become new column names
3. the *values\_from* column variable whose values will fill the new column
variables.
- Further arguments include `values_fill` which, if set, fills in missing
values with the value provided.
```{r}
wide <- penguins %>%
mutate(island_logical = TRUE) %>%
pivot_wider(names_from = species,
values_from = island_logical,
values_fill = list(island_logical = FALSE))
glimpse(wide)
```
- `pivot_longer()` -- transforms a dataframe from wide to long format
- takes four principal arguments:
1. the data
2. *cols* are the names of the columns we use to fill the a new values variable
(or to drop).
3. the *names\_to* column variable we wish to create from the *cols* provided.
4. the *values\_to* column variable we wish to create and fill with values
associated with the *cols* provided.
```{r}
wide %>%
pivot_longer(cols = Adelie:Gentoo,
names_to = "species",
values_to = "island_logical")
```
### Extracting Data
- `write_csv()` -- writes a dataframe to a csv file, output into the file path
specified
```{r}
write_csv(wide, path = "data/penguins_wide.csv")
```
### Importing Data
- `read_csv()` -- function to import a csv file.
- First argument is the path to the data, passed as a character
(inside quotations).
- You can specify what values should be considered missing, using the `na`
argument.
```{r}
penguins_wide <- read_csv("data/penguins_wide.csv")
```
## Data Visualization with ggplot2
This section continues using the [Palmer Penguins data](https://allisonhorst.github.io/palmerpenguins/index.html) to introduce key features of the ggplot2 package for visualizing data
and provide examples combining data wrangling and visualization.
### Packages
```{r}
library(tidyverse)
library(palmerpenguins)
```
### Foundations of `ggplot()`
- `ggplot()` -- a function to create the shell of a visualization, where
specific variables are mapped to different aspects of the plot
- `aes()` -- aesthetics that can be used when creating a `ggplot()`, where the
aesthetics can either be hard coded (e.g. `color = "blue"`) or associated with
a variable (e.g. `color = sex`).
- The following are the aesthetic options for *most* plots:
- `x` -- variable to use for x axis
- `y` -- variable to use for y axis
- `alpha` -- changes transparency
- `color` -- produces colored outline
- `fill` -- fills with color
- `group` -- used with categorical variables, similar to color
```{r}
#nothing should appear on this plot except the axes and labels
penguins %>%
ggplot(aes(x = bill_length_mm, y = bill_depth_mm, color = species))
```
- **`+`** -- an important aspect creating a `ggplot()` is to note that the
`geom_XXX()` function is separated from the `ggplot()` function with a plus
sign, `+`.
- `ggplot()` plots are constructed in series of layers, where the plus sign
separates these layers.
- Generally, the `+` sign can be thought of as the end of a line, so you
should always hit enter/return after it. While it is not mandatory to move
to the next line for each layer, doing so makes the code a lot easier to
organize and read.
- `geom_point()` -- adds a scatter plot; see full explanation later in list
```{r, fig.width=6}
penguins %>%
ggplot(aes(x = bill_length_mm, y = bill_depth_mm, color = species)) +
geom_point()
```
### Geometric Objects to Visualize the Data
- `geom_histogram()` -- adds a histogram to the plot,
where the observations are binned into ranges of values and then frequencies
of observations are plotted on the y-axis
- You can specify the number of bins you want with the `bins` argument
```{r}
penguins %>%
ggplot(aes(x = bill_length_mm)) +
geom_histogram(bins = 20)
```
- `geom_boxplot()` -- adds a boxplot to the plot, where observations are
aggregated (summarized), the min, Q1, median, Q3, and maximum are plotted as the
box and whiskers, and "outliers" are plotted as points.
- You can plot a vertical boxplot by specifying the `x` variable, or a
horizontal boxplot by specifying the `y` variable.
- Note: the min and max may not be included in the whiskers, if they are
deemed to be "outliers" based on the $1.5 \\times \\text{IQR}$ rule.
```{r}
# Horizontal boxplot
penguins %>%
ggplot(aes(x = bill_length_mm)) +
geom_boxplot()
# Vertical boxplot
penguins %>%
ggplot(aes(y = bill_length_mm)) +
geom_boxplot()
```
- `geom_density()` -- adds a density curve to the plot, where the probability
density is plotted on the y-axis (so the density curve has a total area of one).
- By default this creates a density curve without shading. By specifying a
color in the `fill` argument, the density curve is shaded.
- Can be thought of as the "one group" violin plot (see below)
```{r, warning=FALSE, message=FALSE}
penguins %>%
ggplot(aes(x = bill_length_mm)) +
geom_density(fill = "tomato")
```
- `geom_violin()` -- plots violins for each level of a categorical variable
- Can be thought of as a hybrid mix of `geom_boxplot()` and `geom_density()`,
as the density is displayed, but it is reflected to provide a plot similar in
nature to a boxplot.
- To obtain violins stacked vertically, declare the categorical variable as `y`.
To obtain side-by-side violins, declare the categorical variable as `x`.
```{r}
# Stacked vertically
penguins %>%
ggplot(aes(x = bill_length_mm, y = species)) +
geom_violin()
# Side-by-side
penguins %>%
ggplot(aes(y = bill_length_mm, x = species)) +
geom_violin()
```
- `geom_bar()` -- creates a barchart of a categorical variable
- Can produce stacked barcharts by specifying a variable as the `fill`
aesthetic.
- Can change from stacked barchart to a side-by-side barchart by specifying
`position = "dodge"`.
- If your data are already in counts (e.g. output from `count()`), then you
can specify the `stat = "identity"` argument inside `geom_bar()`.
```{r}
# Stacked barchart
penguins %>%
ggplot(aes(x = species)) +
geom_bar(aes(fill = sex))
# Side-by-side barchart
penguins %>%
ggplot(aes(x = species)) +
geom_bar(aes(fill = sex),
position = "dodge")
# If data are raw counts
penguins %>%
count(species, sex) %>%
ggplot(aes(x = species, y = n)) +
geom_bar(aes(fill = sex),
stat = "identity",
position = "dodge")
```
- `geom_point()` -- plots each observation as an (x, y) point, used to create
scatterplots
- Can use `alpha` to increase the transparency of the points, to reduce
overplotting.
- Can specify `aes`thetics inside of `geom_point()` for local aesthetics (point
level) or inside of `ggplot()` for global aesthetics (plot level)
```{r}
penguins %>%
ggplot(aes(x = bill_length_mm, y = bill_depth_mm)) +
geom_point(aes(color = species))
```
- `geom_jitter()` -- plots each observation as an (x, y) point and adds a small
amount of jitter around the point
- Useful so that we can see each point in the locations where there are
overlapping points.
- Can specify the `width` and `height` of the jittering using the optional
arguments.
```{r}
penguins %>%
ggplot(aes(y = body_mass_g, x = species)) +
geom_violin() +
geom_jitter(aes(color = sex), width = 0.25, height = 0.25)
```
- `geom_smooth()` -- plots a line over a set of points, draws the readers eye
to a specific trend
- The methods we will use are "lm" for a linear model (straight line), and
"loess" for a wiggly line
- By default, the smoother gives you gray SE bars, to remove these add
`se = FALSE`
```{r, fig.width=6}
penguins %>%
ggplot(aes(x = bill_length_mm, y = bill_depth_mm, color = species)) +
geom_point() +
geom_smooth(method = "lm")
```
- `facet_wrap()` -- creates subplots of your original plot, based on the levels
of the variable you input
- To facet by one variable, use `~variable`.
- To facet by two variables, use `variable1 ~ variable2`.
- If you prefer for your facets to be organized in rows or columns, use the
`nrow` and/or `ncol` arguments.
```{r, fig.width=12}
penguins %>%
ggplot(aes(x = bill_length_mm, y = bill_depth_mm, color = species)) +
geom_point() +
geom_smooth(method = "lm") +
facet_wrap(~island, nrow = 1)
```
### Plot Characteristics
- `labs()` -- specifies the plot labels, possible labels are: x, y, color, fill,
title, and subtitle
```{r, fig.width=6}
penguins %>%
ggplot(aes(x = bill_length_mm, y = bill_depth_mm, color = species)) +
geom_point() +
geom_smooth(method = "lm") +
labs(x = "Bill Length (mm)",
y = "Bill Depth (mm)",
color = "Penguin Species")
```
- `theme_bw()` -- changes the plotting background to the classic dark-on-light
ggplot2 theme.
- This theme may work better for presentations displayed with a projector.
- Other common themes are `theme_minimal()`, `theme_light()`, and `theme_void()`.
```{r}
penguins %>%
ggplot(aes(x = bill_length_mm, y = bill_depth_mm, color = species)) +
geom_point() +
geom_smooth(method = "lm") +
labs(x = "Bill Length (mm)",
y = "Bill Depth (mm)",
color = "Penguin Species") +
theme_bw()
```
- `theme()` -- adjust individual theme elements
- Possible options are:
- `panel.grid` -- controls the grid lines (`panel.grid = element_blank()`
removes grid lines)
- `text` -- specifies font size for the entire plot (e.g.
`text = element_text(size = 16)`
- `axis.text.x` -- specifies the font size for the x-axis text
- `axis.text.y` -- specifies the font size for the y-axis text
- `plot.title` -- specifies aspects of the plot title, can use
`plot.title = element_text(hjust = 0.5)` to centre the title
```{r}
penguins %>%
ggplot(aes(x = bill_length_mm, y = bill_depth_mm, color = species)) +
geom_point() +
geom_smooth(method = "lm") +
labs(x = "Bill Length (mm)",
y = "Bill Depth (mm)",
color = "Penguin Species") +
theme_bw() +
theme(axis.text.x = element_text(size = 12),
axis.text.y = element_text(size = 12))
```
### Exporting Plots
- `ggsave()` -- convenient function for saving a plot
- Unless specified, defaults to the last plot that was made.
- Uses the size of the current graphics device to determine the size of the
plot.
```{r}
plot1 <- penguins %>%
ggplot(aes(x = bill_length_mm, y = bill_depth_mm, color = species)) +
geom_point() +
geom_smooth(method = "lm") +
facet_wrap(~island, nrow = 1)
ggsave(path = "images/faceted_plot.png", plot = plot1)
```