-
Notifications
You must be signed in to change notification settings - Fork 6k
/
Copy pathfqe_torch_model.py
222 lines (202 loc) · 8.59 KB
/
fqe_torch_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
from ray.rllib.models.utils import get_initializer
from ray.rllib.policy import Policy
from typing import List, Union
from ray.rllib.models.catalog import ModelCatalog
from ray.rllib.models.torch.torch_modelv2 import TorchModelV2
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.utils.annotations import DeveloperAPI
from ray.rllib.utils.framework import try_import_torch
from ray.rllib.utils.typing import ModelConfigDict, TensorType
torch, nn = try_import_torch()
@DeveloperAPI
class FQETorchModel:
"""Pytorch implementation of the Fitted Q-Evaluation (FQE) model from
https://arxiv.org/pdf/1911.06854.pdf
"""
def __init__(
self,
policy: Policy,
gamma: float,
model: ModelConfigDict = None,
n_iters: int = 160,
lr: float = 1e-3,
delta: float = 1e-4,
clip_grad_norm: float = 100.0,
batch_size: int = 32,
tau: float = 0.05,
) -> None:
"""
Args:
policy: Policy to evaluate.
gamma: Discount factor of the environment.
# The ModelConfigDict for self.q_model
model = {
"fcnet_hiddens": [8, 8],
"fcnet_activation": "relu",
"vf_share_layers": True,
},
# Maximum number of training iterations to run on the batch
n_iters = 160,
# Learning rate for Q-function optimizer
lr = 1e-3,
# Early stopping if the mean loss < delta
delta = 1e-4,
# Clip gradients to this maximum value
clip_grad_norm = 100.0,
# Minibatch size for training Q-function
batch_size = 32,
# Polyak averaging factor for target Q-function
tau = 0.05
"""
self.policy = policy
self.gamma = gamma
self.observation_space = policy.observation_space
self.action_space = policy.action_space
if model is None:
model = {
"fcnet_hiddens": [8, 8],
"fcnet_activation": "relu",
"vf_share_layers": True,
}
self.device = self.policy.device
self.q_model: TorchModelV2 = ModelCatalog.get_model_v2(
self.observation_space,
self.action_space,
self.action_space.n,
model,
framework="torch",
name="TorchQModel",
).to(self.device)
self.target_q_model: TorchModelV2 = ModelCatalog.get_model_v2(
self.observation_space,
self.action_space,
self.action_space.n,
model,
framework="torch",
name="TargetTorchQModel",
).to(self.device)
self.n_iters = n_iters
self.lr = lr
self.delta = delta
self.clip_grad_norm = clip_grad_norm
self.batch_size = batch_size
self.tau = tau
self.optimizer = torch.optim.Adam(self.q_model.variables(), self.lr)
initializer = get_initializer("xavier_uniform", framework="torch")
# Hard update target
self.update_target(tau=1.0)
def f(m):
if isinstance(m, nn.Linear):
initializer(m.weight)
self.initializer = f
def reset(self) -> None:
"""Resets/Reinintializes the model weights."""
self.q_model.apply(self.initializer)
def train_q(self, batch: SampleBatch) -> TensorType:
"""Trains self.q_model using FQE loss on given batch.
Args:
batch: A SampleBatch of episodes to train on
Returns:
A list of losses for each training iteration
"""
losses = []
for _ in range(self.n_iters):
minibatch_losses = []
batch.shuffle()
for idx in range(0, batch.count, self.batch_size):
minibatch = batch[idx : idx + self.batch_size]
obs = torch.tensor(minibatch[SampleBatch.OBS], device=self.device)
actions = torch.tensor(
minibatch[SampleBatch.ACTIONS], device=self.device
)
rewards = torch.tensor(
minibatch[SampleBatch.REWARDS], device=self.device
)
next_obs = torch.tensor(
minibatch[SampleBatch.NEXT_OBS], device=self.device
)
dones = torch.tensor(minibatch[SampleBatch.DONES], device=self.device)
# Neccessary if policy uses recurrent/attention model
num_state_inputs = 0
for k in batch.keys():
if k.startswith("state_in_"):
num_state_inputs += 1
state_keys = ["state_in_{}".format(i) for i in range(num_state_inputs)]
# Compute action_probs for next_obs as in FQE
all_actions = torch.zeros([minibatch.count, self.policy.action_space.n])
all_actions[:] = torch.arange(self.policy.action_space.n)
next_action_prob = self.policy.compute_log_likelihoods(
actions=all_actions.T,
obs_batch=next_obs,
state_batches=[minibatch[k] for k in state_keys],
prev_action_batch=minibatch[SampleBatch.ACTIONS],
prev_reward_batch=minibatch[SampleBatch.REWARDS],
actions_normalized=False,
)
next_action_prob = (
torch.exp(next_action_prob.T).to(self.device).detach()
)
q_values, _ = self.q_model({"obs": obs}, [], None)
q_acts = torch.gather(q_values, -1, actions.unsqueeze(-1)).squeeze()
with torch.no_grad():
next_q_values, _ = self.target_q_model({"obs": next_obs}, [], None)
next_v = torch.sum(next_q_values * next_action_prob, axis=-1)
targets = rewards + ~dones * self.gamma * next_v
loss = (targets - q_acts) ** 2
loss = torch.mean(loss)
self.optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad.clip_grad_norm_(
self.q_model.variables(), self.clip_grad_norm
)
self.optimizer.step()
minibatch_losses.append(loss.item())
iter_loss = sum(minibatch_losses) / len(minibatch_losses)
losses.append(iter_loss)
if iter_loss < self.delta:
break
self.update_target()
return losses
def estimate_q(
self,
obs: Union[TensorType, List[TensorType]],
actions: Union[TensorType, List[TensorType]] = None,
) -> TensorType:
"""Given `obs`, a list or array or tensor of observations,
compute the Q-values for `obs` for all actions in the action space.
If `actions` is not None, return the Q-values for the actions provided,
else return Q-values for all actions for each observation in `obs`.
"""
obs = torch.tensor(obs, device=self.device)
q_values, _ = self.q_model({"obs": obs}, [], None)
if actions is not None:
actions = torch.tensor(actions, device=self.device, dtype=int)
q_values = torch.gather(q_values, -1, actions.unsqueeze(-1)).squeeze()
return q_values.detach()
def estimate_v(
self,
obs: Union[TensorType, List[TensorType]],
action_probs: Union[TensorType, List[TensorType]],
) -> TensorType:
"""Given `obs`, compute q-values for all actions in the action space
for each observations s in `obs`, then multiply this by `action_probs`,
the probability distribution over actions for each state s to give the
state value V(s) = sum_A pi(a|s)Q(s,a).
"""
q_values = self.estimate_q(obs)
action_probs = torch.tensor(action_probs, device=self.device)
v_values = torch.sum(q_values * action_probs, axis=-1)
return v_values.detach()
def update_target(self, tau=None):
# Update_target will be called periodically to copy Q network to
# target Q network, using (soft) tau-synching.
tau = tau or self.tau
model_state_dict = self.q_model.state_dict()
# Support partial (soft) synching.
# If tau == 1.0: Full sync from Q-model to target Q-model.
target_state_dict = self.target_q_model.state_dict()
model_state_dict = {
k: tau * model_state_dict[k] + (1 - tau) * v
for k, v in target_state_dict.items()
}
self.target_q_model.load_state_dict(model_state_dict)