forked from matplotlib/matplotlib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
py_adaptors.h
251 lines (201 loc) · 5.77 KB
/
py_adaptors.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
/* -*- mode: c++; c-basic-offset: 4 -*- */
#ifndef __PY_ADAPTORS_H__
#define __PY_ADAPTORS_H__
/***************************************************************************
* This module contains a number of C++ classes that adapt Python data
* structures to C++ and Agg-friendly interfaces.
*/
#include <Python.h>
#include "numpy/arrayobject.h"
#include "py_exceptions.h"
extern "C" {
int convert_path(PyObject *obj, void *pathp);
}
namespace py
{
/************************************************************
* py::PathIterator acts as a bridge between Numpy and Agg. Given a
* pair of Numpy arrays, vertices and codes, it iterates over
* those vertices and codes, using the standard Agg vertex source
* interface:
*
* unsigned vertex(double* x, double* y)
*/
class PathIterator
{
/* We hold references to the Python objects, not just the
underlying data arrays, so that Python reference counting
can work.
*/
PyArrayObject *m_vertices;
PyArrayObject *m_codes;
unsigned m_iterator;
unsigned m_total_vertices;
/* This class doesn't actually do any simplification, but we
store the value here, since it is obtained from the Python
object.
*/
bool m_should_simplify;
double m_simplify_threshold;
public:
inline PathIterator()
: m_vertices(NULL),
m_codes(NULL),
m_iterator(0),
m_total_vertices(0),
m_should_simplify(false),
m_simplify_threshold(1.0 / 9.0)
{
}
inline PathIterator(PyObject *vertices,
PyObject *codes,
bool should_simplify,
double simplify_threshold)
: m_vertices(NULL), m_codes(NULL), m_iterator(0)
{
if (!set(vertices, codes, should_simplify, simplify_threshold))
throw py::exception();
}
inline PathIterator(PyObject *vertices, PyObject *codes)
: m_vertices(NULL), m_codes(NULL), m_iterator(0)
{
if (!set(vertices, codes))
throw py::exception();
}
inline PathIterator(const PathIterator &other)
{
Py_XINCREF(other.m_vertices);
m_vertices = other.m_vertices;
Py_XINCREF(other.m_codes);
m_codes = other.m_codes;
m_iterator = 0;
m_total_vertices = other.m_total_vertices;
m_should_simplify = other.m_should_simplify;
m_simplify_threshold = other.m_simplify_threshold;
}
~PathIterator()
{
Py_XDECREF(m_vertices);
Py_XDECREF(m_codes);
}
inline int
set(PyObject *vertices, PyObject *codes, bool should_simplify, double simplify_threshold)
{
m_should_simplify = should_simplify;
m_simplify_threshold = simplify_threshold;
Py_XDECREF(m_vertices);
m_vertices = (PyArrayObject *)PyArray_FromObject(vertices, NPY_DOUBLE, 2, 2);
if (!m_vertices || PyArray_DIM(m_vertices, 1) != 2) {
PyErr_SetString(PyExc_ValueError, "Invalid vertices array");
return 0;
}
Py_XDECREF(m_codes);
m_codes = NULL;
if (codes != NULL && codes != Py_None) {
m_codes = (PyArrayObject *)PyArray_FromObject(codes, NPY_UINT8, 1, 1);
if (!m_codes || PyArray_DIM(m_codes, 0) != PyArray_DIM(m_vertices, 0)) {
PyErr_SetString(PyExc_ValueError, "Invalid codes array");
return 0;
}
}
m_total_vertices = (unsigned)PyArray_DIM(m_vertices, 0);
m_iterator = 0;
return 1;
}
inline int set(PyObject *vertices, PyObject *codes)
{
return set(vertices, codes, false, 0.0);
}
inline unsigned vertex(double *x, double *y)
{
if (m_iterator >= m_total_vertices) {
*x = 0.0;
*y = 0.0;
return agg::path_cmd_stop;
}
const size_t idx = m_iterator++;
char *pair = (char *)PyArray_GETPTR2(m_vertices, idx, 0);
*x = *(double *)pair;
*y = *(double *)(pair + PyArray_STRIDE(m_vertices, 1));
if (m_codes != NULL) {
return (unsigned)(*(char *)PyArray_GETPTR1(m_codes, idx));
} else {
return idx == 0 ? agg::path_cmd_move_to : agg::path_cmd_line_to;
}
}
inline void rewind(unsigned path_id)
{
m_iterator = path_id;
}
inline unsigned total_vertices() const
{
return m_total_vertices;
}
inline bool should_simplify() const
{
return m_should_simplify;
}
inline double simplify_threshold() const
{
return m_simplify_threshold;
}
inline bool has_curves() const
{
return m_codes != NULL;
}
inline void *get_id()
{
return (void *)m_vertices;
}
};
class PathGenerator
{
PyObject *m_paths;
Py_ssize_t m_npaths;
public:
typedef PathIterator path_iterator;
PathGenerator(PyObject *obj) : m_paths(NULL), m_npaths(0)
{
if (!set(obj)) {
throw py::exception();
}
}
~PathGenerator()
{
Py_XDECREF(m_paths);
}
int set(PyObject *obj)
{
if (!PySequence_Check(obj)) {
return 0;
}
m_paths = obj;
Py_INCREF(m_paths);
m_npaths = PySequence_Size(m_paths);
return 1;
}
Py_ssize_t num_paths() const
{
return m_npaths;
}
Py_ssize_t size() const
{
return m_npaths;
}
path_iterator operator()(size_t i)
{
path_iterator path;
PyObject *item;
item = PySequence_GetItem(m_paths, i % m_npaths);
if (item == NULL) {
throw py::exception();
}
if (!convert_path(item, &path)) {
throw py::exception();
}
Py_DECREF(item);
return path;
}
};
}
#endif