Skip to content

Commit 3223130

Browse files
committed
added 16_tensorboard
1 parent d173914 commit 3223130

File tree

1 file changed

+158
-0
lines changed

1 file changed

+158
-0
lines changed

16_tensorboard.py

Lines changed: 158 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,158 @@
1+
import torch
2+
import torch.nn as nn
3+
import torchvision
4+
import torchvision.transforms as transforms
5+
import matplotlib.pyplot as plt
6+
7+
############## TENSORBOARD ########################
8+
import sys
9+
import torch.nn.functional as F
10+
from torch.utils.tensorboard import SummaryWriter
11+
# default `log_dir` is "runs" - we'll be more specific here
12+
writer = SummaryWriter('runs/mnist1')
13+
###################################################
14+
15+
# Device configuration
16+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
17+
18+
# Hyper-parameters
19+
input_size = 784 # 28x28
20+
hidden_size = 500
21+
num_classes = 10
22+
num_epochs = 1
23+
batch_size = 64
24+
learning_rate = 0.001
25+
26+
# MNIST dataset
27+
train_dataset = torchvision.datasets.MNIST(root='./data',
28+
train=True,
29+
transform=transforms.ToTensor(),
30+
download=True)
31+
32+
test_dataset = torchvision.datasets.MNIST(root='./data',
33+
train=False,
34+
transform=transforms.ToTensor())
35+
36+
# Data loader
37+
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
38+
batch_size=batch_size,
39+
shuffle=True)
40+
41+
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
42+
batch_size=batch_size,
43+
shuffle=False)
44+
45+
examples = iter(test_loader)
46+
example_data, example_targets = examples.next()
47+
48+
for i in range(6):
49+
plt.subplot(2,3,i+1)
50+
plt.imshow(example_data[i][0], cmap='gray')
51+
#plt.show()
52+
53+
############## TENSORBOARD ########################
54+
img_grid = torchvision.utils.make_grid(example_data)
55+
writer.add_image('mnist_images', img_grid)
56+
#writer.close()
57+
#sys.exit()
58+
###################################################
59+
60+
# Fully connected neural network with one hidden layer
61+
class NeuralNet(nn.Module):
62+
def __init__(self, input_size, hidden_size, num_classes):
63+
super(NeuralNet, self).__init__()
64+
self.input_size = input_size
65+
self.l1 = nn.Linear(input_size, hidden_size)
66+
self.relu = nn.ReLU()
67+
self.l2 = nn.Linear(hidden_size, num_classes)
68+
69+
def forward(self, x):
70+
out = self.l1(x)
71+
out = self.relu(out)
72+
out = self.l2(out)
73+
# no activation and no softmax at the end
74+
return out
75+
76+
model = NeuralNet(input_size, hidden_size, num_classes).to(device)
77+
78+
# Loss and optimizer
79+
criterion = nn.CrossEntropyLoss()
80+
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
81+
82+
############## TENSORBOARD ########################
83+
writer.add_graph(model, example_data.reshape(-1, 28*28))
84+
#writer.close()
85+
#sys.exit()
86+
###################################################
87+
88+
# Train the model
89+
running_loss = 0.0
90+
running_correct = 0
91+
n_total_steps = len(train_loader)
92+
for epoch in range(num_epochs):
93+
for i, (images, labels) in enumerate(train_loader):
94+
# origin shape: [100, 1, 28, 28]
95+
# resized: [100, 784]
96+
images = images.reshape(-1, 28*28).to(device)
97+
labels = labels.to(device)
98+
99+
# Forward pass
100+
outputs = model(images)
101+
loss = criterion(outputs, labels)
102+
103+
# Backward and optimize
104+
optimizer.zero_grad()
105+
loss.backward()
106+
optimizer.step()
107+
108+
running_loss += loss.item()
109+
110+
_, predicted = torch.max(outputs.data, 1)
111+
running_correct += (predicted == labels).sum().item()
112+
if (i+1) % 100 == 0:
113+
print (f'Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{n_total_steps}], Loss: {loss.item():.4f}')
114+
############## TENSORBOARD ########################
115+
writer.add_scalar('training loss', running_loss / 100, epoch * n_total_steps + i)
116+
writer.add_scalar('accuracy', running_correct / 100, epoch * n_total_steps + i)
117+
running_correct = 0
118+
running_loss = 0.0
119+
###################################################
120+
121+
# Test the model
122+
# In test phase, we don't need to compute gradients (for memory efficiency)
123+
class_labels = []
124+
class_preds = []
125+
with torch.no_grad():
126+
n_correct = 0
127+
n_samples = 0
128+
for images, labels in test_loader:
129+
images = images.reshape(-1, 28*28).to(device)
130+
labels = labels.to(device)
131+
outputs = model(images)
132+
# max returns (value ,index)
133+
values, predicted = torch.max(outputs.data, 1)
134+
n_samples += labels.size(0)
135+
n_correct += (predicted == labels).sum().item()
136+
137+
class_probs_batch = [F.softmax(output, dim=0) for output in outputs]
138+
139+
class_preds.append(class_probs_batch)
140+
class_labels.append(predicted)
141+
142+
# 10000, 10, and 10000, 1
143+
# stack concatenates tensors along a new dimension
144+
# cat concatenates tensors in the given dimension
145+
class_preds = torch.cat([torch.stack(batch) for batch in class_preds])
146+
class_labels = torch.cat(class_labels)
147+
148+
acc = 100.0 * n_correct / n_samples
149+
print(f'Accuracy of the network on the 10000 test images: {acc} %')
150+
151+
############## TENSORBOARD ########################
152+
classes = range(10)
153+
for i in classes:
154+
labels_i = class_labels == i
155+
preds_i = class_preds[:, i]
156+
writer.add_pr_curve(str(i), labels_i, preds_i, global_step=0)
157+
writer.close()
158+
###################################################

0 commit comments

Comments
 (0)