|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "4936d1e6-5e7d-4e22-ae35-8e888927ce2d", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "# Use Pre-trained CNN as feature extractor" |
| 9 | + ] |
| 10 | + }, |
| 11 | + { |
| 12 | + "cell_type": "markdown", |
| 13 | + "id": "bf9e9fb5-7383-475a-93e1-decdbd59c247", |
| 14 | + "metadata": {}, |
| 15 | + "source": [ |
| 16 | + "Use MobileNetv3 as a feature extractor via the [embetter](https://github.com/koaning/embetter) scikit-learn library and [timm](https://github.com/rwightman/pytorch-image-models). Train a logistic regression classifier in scikit-learn on the embeddings." |
| 17 | + ] |
| 18 | + }, |
| 19 | + { |
| 20 | + "cell_type": "markdown", |
| 21 | + "id": "96b717c7-54c9-40dc-ba80-0fb47da2c0bd", |
| 22 | + "metadata": {}, |
| 23 | + "source": [ |
| 24 | + "" |
| 25 | + ] |
| 26 | + }, |
| 27 | + { |
| 28 | + "cell_type": "code", |
| 29 | + "execution_count": 1, |
| 30 | + "id": "64d1dd64-c45b-4092-84d1-1bfcd0998f15", |
| 31 | + "metadata": {}, |
| 32 | + "outputs": [], |
| 33 | + "source": [ |
| 34 | + "import os\n", |
| 35 | + "\n", |
| 36 | + "# pip install gitpython\n", |
| 37 | + "from git import Repo\n", |
| 38 | + "\n", |
| 39 | + "if not os.path.exists(\"mnist-pngs\"):\n", |
| 40 | + " Repo.clone_from(\"https://github.com/rasbt/mnist-pngs\", \"mnist-pngs\")" |
| 41 | + ] |
| 42 | + }, |
| 43 | + { |
| 44 | + "cell_type": "code", |
| 45 | + "execution_count": 2, |
| 46 | + "id": "3a892538-8d9b-4420-9525-26d1a4b37ae3", |
| 47 | + "metadata": {}, |
| 48 | + "outputs": [], |
| 49 | + "source": [ |
| 50 | + "import os\n", |
| 51 | + "import pandas as pd\n", |
| 52 | + "\n", |
| 53 | + "for name in (\"train\", \"test\"):\n", |
| 54 | + "\n", |
| 55 | + " df = pd.read_csv(f\"mnist-pngs/{name}.csv\")\n", |
| 56 | + " df[\"filepath\"] = df[\"filepath\"].apply(lambda x: \"mnist-pngs/\" + x)\n", |
| 57 | + " df = df.sample(frac=1, random_state=123).reset_index(drop=True)\n", |
| 58 | + " df.to_csv(f\"mnist-pngs/{name}_shuffled.csv\", index=None)" |
| 59 | + ] |
| 60 | + }, |
| 61 | + { |
| 62 | + "cell_type": "code", |
| 63 | + "execution_count": 3, |
| 64 | + "id": "5885e9bb-d43f-46ca-83ae-e2d63edcbb37", |
| 65 | + "metadata": {}, |
| 66 | + "outputs": [ |
| 67 | + { |
| 68 | + "data": { |
| 69 | + "application/vnd.jupyter.widget-view+json": { |
| 70 | + "model_id": "1fba0fcb2b1f408f85013da0d1694dd3", |
| 71 | + "version_major": 2, |
| 72 | + "version_minor": 0 |
| 73 | + }, |
| 74 | + "text/plain": [ |
| 75 | + " 0%| | 0/60 [00:00<?, ?it/s]" |
| 76 | + ] |
| 77 | + }, |
| 78 | + "metadata": {}, |
| 79 | + "output_type": "display_data" |
| 80 | + } |
| 81 | + ], |
| 82 | + "source": [ |
| 83 | + "from sklearn.pipeline import make_pipeline\n", |
| 84 | + "from sklearn.linear_model import SGDClassifier\n", |
| 85 | + "from tqdm.notebook import tqdm\n", |
| 86 | + "\n", |
| 87 | + "# pip install \"embetter[vision]\"\n", |
| 88 | + "from embetter.vision import ImageLoader, TimmEncoder\n", |
| 89 | + "\n", |
| 90 | + "\n", |
| 91 | + "embed = make_pipeline(\n", |
| 92 | + " ImageLoader(),\n", |
| 93 | + " TimmEncoder(name=\"mobilenetv3_large_100\")\n", |
| 94 | + ")\n", |
| 95 | + "\n", |
| 96 | + "model = SGDClassifier(loss='log_loss', n_jobs=-1, shuffle=True)\n", |
| 97 | + "\n", |
| 98 | + "chunksize = 1000\n", |
| 99 | + "train_labels, train_predict = [], []\n", |
| 100 | + "\n", |
| 101 | + "for df in tqdm(pd.read_csv(\"mnist-pngs/train_shuffled.csv\", chunksize=chunksize, iterator=True), total=60):\n", |
| 102 | + " \n", |
| 103 | + " embedded = embed.transform(df[\"filepath\"])\n", |
| 104 | + " model.partial_fit(embedded, df[\"label\"], classes=list(range(10)))" |
| 105 | + ] |
| 106 | + }, |
| 107 | + { |
| 108 | + "cell_type": "code", |
| 109 | + "execution_count": 4, |
| 110 | + "id": "999a24ea-be5d-425f-923c-266372c66b5d", |
| 111 | + "metadata": {}, |
| 112 | + "outputs": [ |
| 113 | + { |
| 114 | + "data": { |
| 115 | + "application/vnd.jupyter.widget-view+json": { |
| 116 | + "model_id": "157302965ac8460c97c77935cc08e1fc", |
| 117 | + "version_major": 2, |
| 118 | + "version_minor": 0 |
| 119 | + }, |
| 120 | + "text/plain": [ |
| 121 | + " 0%| | 0/60 [00:00<?, ?it/s]" |
| 122 | + ] |
| 123 | + }, |
| 124 | + "metadata": {}, |
| 125 | + "output_type": "display_data" |
| 126 | + } |
| 127 | + ], |
| 128 | + "source": [ |
| 129 | + "train_labels, train_predict = [], []\n", |
| 130 | + "\n", |
| 131 | + "for df in tqdm(pd.read_csv(\"mnist-pngs/train.csv\", chunksize=chunksize, iterator=True), total=60):\n", |
| 132 | + " df[\"filepath\"] = df[\"filepath\"].apply(lambda x: \"mnist-pngs/\" + x)\n", |
| 133 | + "\n", |
| 134 | + " embedded = embed.transform(df[\"filepath\"])\n", |
| 135 | + " train_predict.extend(model.predict(embedded))\n", |
| 136 | + " train_labels.extend(list(df[\"label\"].values))" |
| 137 | + ] |
| 138 | + }, |
| 139 | + { |
| 140 | + "cell_type": "code", |
| 141 | + "execution_count": 5, |
| 142 | + "id": "c816cd7b-ed3a-4cb2-8aa6-400068a2e414", |
| 143 | + "metadata": {}, |
| 144 | + "outputs": [ |
| 145 | + { |
| 146 | + "data": { |
| 147 | + "application/vnd.jupyter.widget-view+json": { |
| 148 | + "model_id": "7869826407314279a2806bf602a796a8", |
| 149 | + "version_major": 2, |
| 150 | + "version_minor": 0 |
| 151 | + }, |
| 152 | + "text/plain": [ |
| 153 | + " 0%| | 0/10 [00:00<?, ?it/s]" |
| 154 | + ] |
| 155 | + }, |
| 156 | + "metadata": {}, |
| 157 | + "output_type": "display_data" |
| 158 | + } |
| 159 | + ], |
| 160 | + "source": [ |
| 161 | + "test_labels, test_predict = [], []\n", |
| 162 | + "\n", |
| 163 | + "for df in tqdm(pd.read_csv(\"mnist-pngs/test_shuffled.csv\", chunksize=chunksize, iterator=True), total=10):\n", |
| 164 | + "\n", |
| 165 | + " embedded = embed.transform(df[\"filepath\"])\n", |
| 166 | + " test_predict.extend(model.predict(embedded))\n", |
| 167 | + " test_labels.extend(list(df[\"label\"].values))" |
| 168 | + ] |
| 169 | + }, |
| 170 | + { |
| 171 | + "cell_type": "code", |
| 172 | + "execution_count": 6, |
| 173 | + "id": "4a78add1-7f93-40fc-b119-9dbbe0aa55b4", |
| 174 | + "metadata": {}, |
| 175 | + "outputs": [ |
| 176 | + { |
| 177 | + "name": "stdout", |
| 178 | + "output_type": "stream", |
| 179 | + "text": [ |
| 180 | + "Train accuracy: 0.92\n", |
| 181 | + "Test accuracy: 0.92\n" |
| 182 | + ] |
| 183 | + } |
| 184 | + ], |
| 185 | + "source": [ |
| 186 | + "from sklearn.metrics import accuracy_score\n", |
| 187 | + "\n", |
| 188 | + "print(f\"Train accuracy: {accuracy_score(train_labels, train_predict):.2f}\")\n", |
| 189 | + "print(f\"Test accuracy: {accuracy_score(test_labels, test_predict):.2f}\")" |
| 190 | + ] |
| 191 | + } |
| 192 | + ], |
| 193 | + "metadata": { |
| 194 | + "kernelspec": { |
| 195 | + "display_name": "Python 3 (ipykernel)", |
| 196 | + "language": "python", |
| 197 | + "name": "python3" |
| 198 | + }, |
| 199 | + "language_info": { |
| 200 | + "codemirror_mode": { |
| 201 | + "name": "ipython", |
| 202 | + "version": 3 |
| 203 | + }, |
| 204 | + "file_extension": ".py", |
| 205 | + "mimetype": "text/x-python", |
| 206 | + "name": "python", |
| 207 | + "nbconvert_exporter": "python", |
| 208 | + "pygments_lexer": "ipython3", |
| 209 | + "version": "3.9.7" |
| 210 | + } |
| 211 | + }, |
| 212 | + "nbformat": 4, |
| 213 | + "nbformat_minor": 5 |
| 214 | +} |
0 commit comments