-
Notifications
You must be signed in to change notification settings - Fork 131
Conversation
Realized I put my last change under 0.13 vs 0.14
…d fewer registers
[REVIEW] Fixed errors in test_wavelets and test_windows
While benchmarking modifications I noticed that the kernels actually got 30%-80% slower after refactorization. Upon further inspection, I realized I forgot to remove kernel.inpsect_types(), which I used to determine where additional register pressure was happening. After removal, kernel performance improved as expected. Pre-refactor ```bash ------------------------------------------------------------------------------------------------ benchmark 'Convolve2d': 18 tests ------------------------------------------------------------------------------------------------ Name (time in us) Min Max Mean StdDev Median IQR Outliers OPS Rounds Iterations ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- bench_convolve2d_gpu[valid-symm-5-256] 510.2240 (1.0) 15,333.3480 (26.26) 571.9330 (1.10) 383.8809 (79.14) 521.2340 (1.00) 9.3978 (2.20) 72;344 1,748.4564 (0.91) 1933 1 bench_convolve2d_gpu[valid-wrap-5-256] 511.6850 (1.00) 583.8680 (1.0) 519.9893 (1.0) 4.8505 (1.0) 519.4940 (1.0) 4.2635 (1.0) 275;59 1,923.1165 (1.0) 1935 1 bench_convolve2d_gpu[valid-fill-5-256] 511.8660 (1.00) 7,813.9960 (13.38) 572.2272 (1.10) 293.1461 (60.44) 520.5650 (1.00) 8.7820 (2.06) 90;369 1,747.5577 (0.91) 1935 1 bench_convolve2d_gpu[valid-symm-100-256] 513.9480 (1.01) 33,035.2710 (56.58) 1,526.7744 (2.94) 851.7301 (175.60) 1,680.8205 (3.24) 39.5810 (9.28) 305;477 654.9756 (0.34) 1930 1 bench_convolve2d_gpu[valid-fill-100-256] 514.1020 (1.01) 9,677.4270 (16.57) 1,552.3711 (2.99) 532.2713 (109.74) 1,665.1690 (3.21) 20.0863 (4.71) 365;555 644.1758 (0.33) 1923 1 bench_convolve2d_gpu[valid-wrap-100-256] 515.2980 (1.01) 26,289.8050 (45.03) 1,651.3394 (3.18) 937.2897 (193.24) 1,705.6270 (3.28) 358.8790 (84.17) 300;381 605.5690 (0.31) 1938 1 bench_convolve2d_gpu[full-fill-5-256] 635.2670 (1.25) 14,259.9010 (24.42) 713.8664 (1.37) 463.6417 (95.59) 647.1130 (1.25) 13.9065 (3.26) 59;225 1,400.8223 (0.73) 1517 1 bench_convolve2d_gpu[full-fill-100-256] 636.6020 (1.25) 44,891.0620 (76.89) 5,916.0973 (11.38) 2,463.1392 (507.81) 6,158.3765 (11.85) 58.7315 (13.78) 154;342 169.0304 (0.09) 1564 1 bench_convolve2d_gpu[same-fill-100-256] 646.5370 (1.27) 41,246.0190 (70.64) 3,118.7860 (6.00) 1,399.0277 (288.43) 3,270.7890 (6.30) 26.7110 (6.27) 166;400 320.6376 (0.17) 1536 1 bench_convolve2d_gpu[same-fill-5-256] 647.1240 (1.27) 21,469.7490 (36.77) 722.3554 (1.39) 613.8349 (126.55) 655.7870 (1.26) 12.7440 (2.99) 37;266 1,384.3602 (0.72) 1542 1 bench_convolve2d_gpu[full-wrap-5-256] 828.4980 (1.62) 1,444.1390 (2.47) 930.4144 (1.79) 67.3899 (13.89) 922.8130 (1.78) 10.0715 (2.36) 52;95 1,074.7899 (0.56) 1123 1 bench_convolve2d_gpu[full-symm-5-256] 830.2290 (1.63) 9,621.5270 (16.48) 1,013.7068 (1.95) 440.6848 (90.85) 925.5930 (1.78) 17.7040 (4.15) 61;230 986.4785 (0.51) 1103 1 bench_convolve2d_gpu[same-symm-5-256] 830.3560 (1.63) 1,363.4320 (2.34) 922.9753 (1.77) 29.2591 (6.03) 921.0910 (1.77) 10.2490 (2.40) 66;77 1,083.4526 (0.56) 1104 1 bench_convolve2d_gpu[same-wrap-5-256] 831.1370 (1.63) 5,935.4890 (10.17) 1,021.7239 (1.96) 369.6598 (76.21) 924.1815 (1.78) 20.7840 (4.87) 70;274 978.7380 (0.51) 1100 1 bench_convolve2d_gpu[same-wrap-100-256] 3,914.5930 (7.67) 10,156.3130 (17.39) 4,211.4239 (8.10) 479.8311 (98.92) 4,085.6320 (7.86) 66.1555 (15.52) 71;152 237.4494 (0.12) 1053 1 bench_convolve2d_gpu[same-symm-100-256] 3,930.4090 (7.70) 9,289.1910 (15.91) 4,269.3678 (8.21) 527.1550 (108.68) 4,128.2810 (7.95) 72.2638 (16.95) 79;138 234.2267 (0.12) 941 1 bench_convolve2d_gpu[full-wrap-100-256] 6,897.2370 (13.52) 31,018.7400 (53.13) 7,285.2016 (14.01) 1,174.7039 (242.18) 7,058.4005 (13.59) 20.6335 (4.84) 31;117 137.2646 (0.07) 552 1 bench_convolve2d_gpu[full-symm-100-256] 6,901.0070 (13.53) 39,261.4920 (67.24) 7,301.4274 (14.04) 1,379.2833 (284.36) 7,065.7780 (13.60) 13.0065 (3.05) 37;165 136.9595 (0.07) 843 1 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------ benchmark 'Correlate2d': 18 tests ------------------------------------------------------------------------------------------------ Name (time in us) Min Max Mean StdDev Median IQR Outliers OPS Rounds Iterations ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- bench_correlate2d_gpu[valid-wrap-5-256] 513.3330 (1.0) 17,201.1460 (30.09) 572.1528 (1.10) 451.9519 (117.45) 521.5820 (1.00) 7.3310 (1.73) 48;322 1,747.7848 (0.91) 1921 1 bench_correlate2d_gpu[valid-wrap-100-256] 513.4460 (1.00) 37,261.7010 (65.17) 1,520.8621 (2.91) 921.8817 (239.56) 1,673.4550 (3.21) 23.9982 (5.67) 283;494 657.5218 (0.34) 1929 1 bench_correlate2d_gpu[valid-fill-5-256] 514.3820 (1.00) 14,936.8660 (26.13) 574.0838 (1.10) 408.4802 (106.15) 523.4085 (1.00) 8.1730 (1.93) 53;297 1,741.9059 (0.91) 1922 1 bench_correlate2d_gpu[valid-symm-5-256] 514.4120 (1.00) 571.7280 (1.0) 521.7597 (1.0) 3.8482 (1.0) 521.3160 (1.0) 4.2300 (1.0) 431;46 1,916.5909 (1.0) 1922 1 bench_correlate2d_gpu[valid-symm-100-256] 515.2740 (1.00) 20,015.0360 (35.01) 1,535.0158 (2.94) 709.2960 (184.32) 1,677.6560 (3.22) 97.5280 (23.06) 325;500 651.4591 (0.34) 1922 1 bench_correlate2d_gpu[valid-fill-100-256] 516.8210 (1.01) 41,200.3440 (72.06) 1,529.9691 (2.93) 1,029.9279 (267.64) 1,667.2765 (3.20) 43.4215 (10.27) 7;484 653.6080 (0.34) 1920 1 bench_correlate2d_gpu[full-fill-5-256] 631.1470 (1.23) 8,252.6560 (14.43) 702.6754 (1.35) 358.7532 (93.23) 639.7100 (1.23) 7.5010 (1.77) 72;257 1,423.1322 (0.74) 1572 1 bench_correlate2d_gpu[full-fill-100-256] 637.2760 (1.24) 53,139.3930 (92.95) 6,167.4009 (11.82) 2,577.0833 (669.69) 6,376.5270 (12.23) 256.1610 (60.56) 166;282 162.1429 (0.08) 1558 1 bench_correlate2d_gpu[same-fill-5-256] 643.1740 (1.25) 17,520.5990 (30.64) 710.0926 (1.36) 506.4890 (131.62) 650.5470 (1.25) 7.5278 (1.78) 54;211 1,408.2671 (0.73) 1537 1 bench_correlate2d_gpu[same-fill-100-256] 646.7530 (1.26) 38,736.7920 (67.75) 3,195.6841 (6.12) 1,439.6151 (374.10) 3,341.2790 (6.41) 121.0445 (28.62) 164;246 312.9220 (0.16) 1528 1 bench_correlate2d_gpu[same-wrap-5-256] 827.2430 (1.61) 1,675.4340 (2.93) 921.2421 (1.77) 30.9059 (8.03) 921.5240 (1.77) 10.3455 (2.45) 43;61 1,085.4910 (0.57) 1105 1 bench_correlate2d_gpu[same-symm-5-256] 831.7930 (1.62) 12,938.7350 (22.63) 1,010.6727 (1.94) 615.6276 (159.98) 923.1270 (1.77) 15.2415 (3.60) 49;216 989.4400 (0.52) 1183 1 bench_correlate2d_gpu[full-wrap-5-256] 835.5890 (1.63) 1,329.2750 (2.33) 926.2752 (1.78) 27.9575 (7.27) 923.3630 (1.77) 11.7510 (2.78) 81;125 1,079.5928 (0.56) 1098 1 bench_correlate2d_gpu[full-symm-5-256] 842.3170 (1.64) 1,129.7000 (1.98) 928.5555 (1.78) 20.4641 (5.32) 924.8250 (1.77) 15.1653 (3.59) 178;91 1,076.9415 (0.56) 1125 1 bench_correlate2d_gpu[same-wrap-100-256] 3,852.3210 (7.50) 14,806.6290 (25.90) 4,268.0580 (8.18) 698.9350 (181.63) 4,127.3910 (7.92) 117.2280 (27.71) 56;106 234.2986 (0.12) 942 1 bench_correlate2d_gpu[same-symm-100-256] 3,859.9840 (7.52) 39,131.1580 (68.44) 4,311.6184 (8.26) 1,359.9556 (353.40) 4,153.8660 (7.97) 77.0693 (18.22) 17;132 231.9315 (0.12) 939 1 bench_correlate2d_gpu[full-symm-100-256] 6,945.8410 (13.53) 25,385.0130 (44.40) 7,533.7652 (14.44) 1,335.8629 (347.14) 7,288.2110 (13.98) 232.1215 (54.88) 38;83 132.7358 (0.07) 867 1 bench_correlate2d_gpu[full-wrap-100-256] 6,949.7780 (13.54) 13,981.4920 (24.45) 7,451.6177 (14.28) 606.5891 (157.63) 7,325.2910 (14.05) 117.3285 (27.74) 30;42 134.1990 (0.07) 399 1 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ``` After refactor ```bash ------------------------------------------------------------------------------------------------ benchmark 'Convolve2d': 18 tests ------------------------------------------------------------------------------------------------ Name (time in us) Min Max Mean StdDev Median IQR Outliers OPS Rounds Iterations ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- bench_convolve2d_gpu[valid-symm-5-256] 289.3570 (1.0) 470.5760 (1.0) 299.8174 (1.0) 20.8994 (1.0) 294.0705 (1.0) 2.8040 (1.0) 255;429 3,335.3633 (1.0) 3390 1 bench_convolve2d_gpu[valid-fill-100-256] 291.0750 (1.01) 39,555.3130 (84.06) 1,718.1731 (5.73) 1,004.5103 (48.06) 1,798.2900 (6.12) 29.3343 (10.46) 348;758 582.0135 (0.17) 3383 1 bench_convolve2d_gpu[valid-wrap-5-256] 291.0810 (1.01) 6,733.8600 (14.31) 335.5837 (1.12) 203.8530 (9.75) 296.4200 (1.01) 11.2420 (4.01) 121;517 2,979.8823 (0.89) 3017 1 bench_convolve2d_gpu[valid-wrap-100-256] 291.3480 (1.01) 25,356.8570 (53.88) 1,713.2760 (5.71) 772.7803 (36.98) 1,802.1360 (6.13) 24.9540 (8.90) 351;792 583.6771 (0.17) 3351 1 bench_convolve2d_gpu[valid-symm-100-256] 291.6400 (1.01) 32,091.9010 (68.20) 1,761.0148 (5.87) 941.7382 (45.06) 1,845.2820 (6.27) 57.6167 (20.55) 356;617 567.8544 (0.17) 3393 1 bench_convolve2d_gpu[valid-fill-5-256] 292.7430 (1.01) 14,087.3250 (29.94) 332.3826 (1.11) 318.1229 (15.22) 302.8065 (1.03) 4.7920 (1.71) 32;545 3,008.5815 (0.90) 3314 1 bench_convolve2d_gpu[same-fill-5-256] 410.9540 (1.42) 637.5710 (1.35) 425.8010 (1.42) 28.7972 (1.38) 416.5360 (1.42) 4.4903 (1.60) 215;323 2,348.5152 (0.70) 2401 1 bench_convolve2d_gpu[same-fill-100-256] 412.5610 (1.43) 39,259.9070 (83.43) 3,695.8789 (12.33) 1,474.8376 (70.57) 3,790.8820 (12.89) 206.9310 (73.80) 214;295 270.5716 (0.08) 2409 1 bench_convolve2d_gpu[full-fill-5-256] 416.7480 (1.44) 31,754.1690 (67.48) 469.2916 (1.57) 682.8110 (32.67) 424.9395 (1.45) 8.4200 (3.00) 9;353 2,130.8715 (0.64) 2328 1 bench_convolve2d_gpu[full-fill-100-256] 417.5240 (1.44) 43,121.4420 (91.64) 6,389.9165 (21.31) 2,019.1906 (96.61) 6,549.3160 (22.27) 94.1055 (33.56) 192;335 156.4966 (0.05) 2379 1 bench_convolve2d_gpu[full-wrap-5-256] 603.8140 (2.09) 1,327.3670 (2.82) 615.6243 (2.05) 36.0608 (1.73) 610.3810 (2.08) 4.3390 (1.55) 30;142 1,624.3673 (0.49) 1622 1 bench_convolve2d_gpu[full-symm-5-256] 607.7200 (2.10) 14,550.7470 (30.92) 686.1686 (2.29) 455.0175 (21.77) 615.4170 (2.09) 11.5750 (4.13) 60;297 1,457.3677 (0.44) 1625 1 bench_convolve2d_gpu[same-wrap-5-256] 611.7380 (2.11) 21,033.0840 (44.70) 691.8494 (2.31) 578.4854 (27.68) 617.9800 (2.10) 10.9822 (3.92) 63;289 1,445.4012 (0.43) 1623 1 bench_convolve2d_gpu[same-symm-5-256] 612.7590 (2.12) 1,108.6150 (2.36) 633.4309 (2.11) 47.6948 (2.28) 619.7770 (2.11) 5.6733 (2.02) 83;264 1,578.7042 (0.47) 1555 1 bench_convolve2d_gpu[same-wrap-100-256] 3,912.4340 (13.52) 14,361.6620 (30.52) 4,531.6651 (15.11) 643.9760 (30.81) 4,430.3930 (15.07) 169.5663 (60.47) 75;136 220.6694 (0.07) 1191 1 bench_convolve2d_gpu[same-symm-100-256] 4,042.5770 (13.97) 19,196.8160 (40.79) 4,573.6260 (15.25) 803.4576 (38.44) 4,434.7250 (15.08) 137.1740 (48.92) 69;166 218.6449 (0.07) 1139 1 bench_convolve2d_gpu[full-symm-100-256] 7,063.3340 (24.41) 14,383.6150 (30.57) 7,544.1684 (25.16) 556.3906 (26.62) 7,407.1680 (25.19) 93.7680 (33.44) 82;142 132.5527 (0.04) 1087 1 bench_convolve2d_gpu[full-wrap-100-256] 7,186.3330 (24.84) 28,378.1610 (60.31) 7,583.5002 (25.29) 1,209.0888 (57.85) 7,365.3980 (25.05) 60.6180 (21.62) 25;116 131.8652 (0.04) 633 1 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------ benchmark 'Correlate2d': 18 tests ------------------------------------------------------------------------------------------------ Name (time in us) Min Max Mean StdDev Median IQR Outliers OPS Rounds Iterations ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- bench_correlate2d_gpu[valid-fill-5-256] 289.8440 (1.0) 469.2490 (1.0) 299.8807 (1.01) 20.0610 (3.50) 294.4315 (1.0) 2.7590 (1.27) 261;384 3,334.6590 (0.99) 3376 1 bench_correlate2d_gpu[valid-symm-5-256] 290.6350 (1.00) 543.3010 (1.16) 296.1015 (1.0) 5.7306 (1.0) 295.3565 (1.00) 2.1700 (1.0) 114;260 3,377.2201 (1.0) 3356 1 bench_correlate2d_gpu[valid-wrap-5-256] 293.2960 (1.01) 545.2400 (1.16) 303.2287 (1.02) 30.6294 (5.34) 297.6380 (1.01) 2.5895 (1.19) 65;335 3,297.8414 (0.98) 3340 1 bench_correlate2d_gpu[valid-symm-100-256] 293.7680 (1.01) 34,678.7460 (73.90) 1,922.7692 (6.49) 1,008.8000 (176.04) 2,024.8570 (6.88) 75.2370 (34.67) 318;716 520.0832 (0.15) 3366 1 bench_correlate2d_gpu[valid-fill-100-256] 294.4860 (1.02) 43,762.9800 (93.26) 1,883.7540 (6.36) 1,162.0444 (202.78) 1,968.9140 (6.69) 83.9130 (38.67) 326;575 530.8549 (0.16) 3366 1 bench_correlate2d_gpu[valid-wrap-100-256] 303.8300 (1.05) 29,100.6200 (62.02) 1,911.8953 (6.46) 867.0968 (151.31) 1,995.9900 (6.78) 78.4578 (36.16) 369;635 523.0412 (0.15) 3345 1 bench_correlate2d_gpu[full-fill-5-256] 416.1020 (1.44) 895.4670 (1.91) 428.3527 (1.45) 29.6915 (5.18) 420.9380 (1.43) 4.2977 (1.98) 133;282 2,334.5250 (0.69) 2369 1 bench_correlate2d_gpu[full-fill-100-256] 419.7600 (1.45) 48,226.9290 (102.77) 7,447.0345 (25.15) 2,322.9401 (405.35) 7,605.7280 (25.83) 332.8787 (153.40) 216;291 134.2816 (0.04) 2371 1 bench_correlate2d_gpu[same-fill-5-256] 421.1660 (1.45) 726.1020 (1.55) 428.4793 (1.45) 16.2861 (2.84) 426.4300 (1.45) 3.1037 (1.43) 37;170 2,333.8350 (0.69) 2359 1 bench_correlate2d_gpu[same-fill-100-256] 426.9120 (1.47) 50,810.3820 (108.28) 3,982.7944 (13.45) 1,843.8557 (321.75) 4,089.8880 (13.89) 156.3610 (72.06) 188;388 251.0800 (0.07) 2335 1 bench_correlate2d_gpu[full-symm-5-256] 599.7500 (2.07) 6,602.0830 (14.07) 674.0723 (2.28) 343.1494 (59.88) 607.2810 (2.06) 8.6010 (3.96) 68;328 1,483.5204 (0.44) 1656 1 bench_correlate2d_gpu[same-wrap-5-256] 603.1310 (2.08) 1,307.0180 (2.79) 631.8394 (2.13) 52.5475 (9.17) 608.7730 (2.07) 12.4580 (5.74) 255;268 1,582.6806 (0.47) 1642 1 bench_correlate2d_gpu[same-symm-5-256] 603.7990 (2.08) 6,925.6470 (14.76) 635.5537 (2.15) 261.9477 (45.71) 609.7730 (2.07) 3.3270 (1.53) 28;124 1,573.4311 (0.47) 1642 1 bench_correlate2d_gpu[full-wrap-5-256] 608.0400 (2.10) 13,025.6710 (27.76) 700.8097 (2.37) 476.8657 (83.21) 614.7330 (2.09) 65.0760 (29.99) 65;139 1,426.9209 (0.42) 1640 1 bench_correlate2d_gpu[same-wrap-100-256] 4,012.2520 (13.84) 28,239.4220 (60.18) 4,776.9270 (16.13) 851.5763 (148.60) 4,694.7670 (15.95) 156.2385 (72.00) 46;179 209.3396 (0.06) 1184 1 bench_correlate2d_gpu[same-symm-100-256] 4,045.4330 (13.96) 5,410.6700 (11.53) 4,509.4683 (15.23) 242.4697 (42.31) 4,502.0000 (15.29) 258.9298 (119.32) 96;7 221.7556 (0.07) 305 1 bench_correlate2d_gpu[full-wrap-100-256] 7,441.9810 (25.68) 42,325.2290 (90.20) 8,601.1267 (29.05) 1,244.4556 (217.16) 8,476.3290 (28.79) 333.7595 (153.81) 46;136 116.2638 (0.03) 1101 1 bench_correlate2d_gpu[full-symm-100-256] 7,652.4150 (26.40) 26,369.2740 (56.19) 8,595.7713 (29.03) 1,025.7598 (179.00) 8,428.3790 (28.63) 307.3635 (141.64) 75;120 116.3363 (0.03) 1241 1 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ```
[REVIEW] Branch 0.14 merge 0.13
[REVIEW] Refactor _signaltools.py to new Numba/CuPy framework.
Added `import pytest-benchmark`
Added `import pytest-benchmark`
Added `import pytest-benchmark`
Added `import pytest-benchmark`
Added `import pytest-benchmark`
Install pytest-benchmark for CI process
Removing pytest-benchmark
Removing pytest-benchmark
Removing pytest-benchmark
Removing pytest-benchmark
Removing pytest-benchmark
[REVIEW] Add pytest-benchmark to cuSignal library
…_numba for correlate2d and convolve2d 2. Update _signaltools.py to now use cupy.pad(symm/wrap) versus numpy.pad(symm/wrap) 20x-30x improvement elminiating data transfers 3. Update Numba kernel indexing to match CuPy raw kernels
[REVIEW] Added CuPy raw kernels for correlate2d and convolve2d
[REVIEW] Port to CuPy
[REVIEW] Fix flake8 errors
[REVIEW] Reorganize Jupyter notebooks to match code reorg
[WIP] Implementation of `sosfilt` as an alternative to `lfilter`
README.md
Outdated
## Documentation | ||
The complete cuSignal API documentation including a complete list of functionality and examples can be found for both the Stable and Nightly (Experimental) releases. | ||
|
||
[cuSignal 0.13 API](https://docs.rapids.ai/api/cusignal/stable/) | [cuSignal 0.14 Nightly](https://docs.rapids.ai/api/cusignal/nightly/) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Should this be cuSignal 0.14 API and cuSignal 0.15 Nightly?
README.md
Outdated
``` | ||
# For CUDA 10.0 | ||
conda install -c rapidsai -c nvidia -c conda-forge \ | ||
-c defaults cusignal=0.13 python=3.6 cudatoolkit=10.0 |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Again, should this be cusignal=0.14?
README.md
Outdated
|
||
# or, for CUDA 10.1.2 | ||
conda install -c rapidsai -c nvidia -c numba -c conda-forge \ | ||
cusignal=0.13 python=3.6 cudatoolkit=10.1 |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
cusignal=0.14?
README.md
Outdated
|
||
# or, for CUDA 10.2 | ||
conda install -c rapidsai -c nvidia -c numba -c conda-forge \ | ||
cusignal=0.13 python=3.6 cudatoolkit=10.2 |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
cusignal=0.14?
README.md
Outdated
|
||
1. Clone the repository | ||
|
||
```bash | ||
# Set the location to cuSignal in an environment variable CUSIGNAL_HOME | ||
# Set the localtion to cuSignal in an environment variable CUSIGNAL_HOME |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
localtion --> location?
README.md
Outdated
@@ -261,9 +316,48 @@ In the cuSignal top level directory: | |||
pytest | |||
``` | |||
|
|||
### Docker - All RAPIDS Libraries, including cuSignal | |||
|
|||
For `cusignal version == 0.13`: |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
0.13 --> 0.14
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Most of my comments are about versioning.
I concur with all of Matt's suggestions. @BradReesWork, how do we go about updating the README w.r.t. this Release PR? |
Open a PR against |
@raydouglass -- Pushed README update here: #110 |
[REVIEW] Update readme for 0.14
❄️ Code freeze for
branch-0.14
and v0.14 releaseWhat does this mean?
Only critical/hotfix level issues should be merged into
branch-0.14
until release (merging of this PR).What is the purpose of this PR?
branch-0.14
intomaster
for the release