Skip to content

Commit 6db61ea

Browse files
authored
Update SHORT_NOTES.md
1 parent 45bc6b8 commit 6db61ea

File tree

1 file changed

+7
-0
lines changed

1 file changed

+7
-0
lines changed

SHORT_NOTES.md

Lines changed: 7 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -22,16 +22,23 @@ if P is a prime number and a number n can be represeted by n=P^k . Then, There a
2222

2323

2424
Phi(n)=Phi(P^k)
25+
2526
=n-P^(k-1)
27+
2628
=P^k - P^(k-1)
2729
2830
If n = P1^a1 * P2^a2 * P3^a3 ................ Pk^ak , where P1,P2....Pk are prime numbers then , We can say that
2931

3032
Phi(n) = Phi(P1^a1) * Phi(P2^a2) .......... Phi(Pk^ak)
33+
3134
= ( P1^a1 - P1^(a1-1) ) * (P2^a2 - P2^(a2-1) ) ......... ( Pk^ak - Pk^(ak-1) )
35+
3236
= ( P1^a1 - P1^a1/P1 ) ) * (P2^a2 - P2^a2/P2 ) ) ......... ( Pk^ak - Pk^ak/Pk) ) [a^(b-1) = a^b/a ]
37+
3338
= P1^a1 ( 1-1/P1 ) P2^a2 ( 1-1/P2 ) .........Pk^ak( 1-1/pk)
39+
3440
= P1^a1 * P2^a2 .....Pk^ak * ( 1-1/P1 )( 1-1/P2 ).........( 1-1/pk)
41+
3542
= n * ( 1-1/P1 )( 1-1/P2 ).........( 1-1/pk)
3643
3744

0 commit comments

Comments
 (0)