-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrainingModel.py
192 lines (144 loc) · 6.01 KB
/
TrainingModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# Accepts a ECG dataset and trains to classify them as apnea, no apnea.
import csv
import numpy as np
import pandas as pd
import os
import sys
import tensorflow as tf
from sklearn.model_selection import train_test_split
# Parameters
SAMPLE_SIZE= 2560000 #Number of samples
SAMPLE_FREQUENCY = 100
CLASSES = {
'apnea':[1,0],
#"borderline_apnea":[0,1,0],
"no_apnea":[0,1]
}
EPOCHS=15
BATCH_SIZE=1
KERNEL_SIZE=4
FILTERS=64
def main():
# handle improper usage.
if len(sys.argv) != 2:
sys.exit("Usage: apnea.py [dataset]")
data_dir = sys.argv[1]
print (f"ECG DATASET AT {data_dir}")
# READING TRAINING DATASET
train_data_dir = os.path.join(data_dir, "training_set")
print("TRAINIGN DATASET IS LOADING FROM %s"%train_data_dir)
traindataset, valdataset = load_train_data(train_data_dir)
print("TRAIN DATASET SIZE")
print(traindataset[0].shape, traindataset[1].shape)
print(valdataset[0].shape, valdataset[1].shape)
# CONVERTING NUMPY DATASET TO TENSORFLOW DATASET
print("CONVERTING DATASET TO TENSORFLOW FORMAT")
traindataset = tf.data.Dataset.from_tensor_slices(traindataset)
valdataset = tf.data.Dataset.from_tensor_slices(valdataset)
traindataset = traindataset.batch(BATCH_SIZE)
valdataset = valdataset.batch(BATCH_SIZE)
print("CREATING MODEL USING KERAS")
model = get_model()
model.build((None, 2560000, 1))
print(model.summary())
model.compile(optimizer="adam",loss="categorical_crossentropy", metrics=["accuracy"])
print("TRAINING MODEL")
model.fit(traindataset, epochs=EPOCHS)
print("evaluating model")
model.evaluate(valdataset, verbose=2)
# use test dataset with predict function
#print("Predicting Model")
#model.predict(testdataset, verbose=2)
#TO SAVE THE MODEL
model.save("./sleep_apnea_model.h5")
def load_train_data(data_dir):
# data_dir = location of training dataset
X = []
y = []
list_categories = os.listdir(data_dir)
for cat in list_categories:
list_files = os.listdir(os.path.join(data_dir, cat))
for f in list_files:
temp_data=pd.read_csv(os.path.join(data_dir, cat, f), index_col=0, header=0)
print(f, temp_data.shape)
temp = np.array([np.array([e])for e in temp_data['ECG']])
X.append(temp)
y.append(CLASSES[cat])
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2)
return (np.array(X_train), np.array(y_train)), (np.array(X_val), np.array(y_val))
def get_model():
model = tf.keras.models.Sequential([
tf.keras.layers.Conv1D(filters=FILTERS, kernel_size=KERNEL_SIZE,activation="relu"),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.MaxPool1D(pool_size=(2)),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Conv1D(filters=FILTERS,kernel_size=KERNEL_SIZE, activation="relu"),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.MaxPool1D(pool_size=(2)),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Conv1D(filters=FILTERS,kernel_size=KERNEL_SIZE, activation="relu"),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.MaxPool1D(pool_size=(2)),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Conv1D(filters=FILTERS,kernel_size=KERNEL_SIZE, activation="relu"),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.MaxPool1D(pool_size=(2)),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Conv1D(filters=FILTERS,kernel_size=KERNEL_SIZE,activation="relu"),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.MaxPool1D(pool_size=(2)),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Conv1D(filters=FILTERS,kernel_size=KERNEL_SIZE,activation="relu"),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.MaxPool1D(pool_size=(2)),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Conv1D(filters=FILTERS,kernel_size=KERNEL_SIZE, activation="relu"),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.MaxPool1D(pool_size=(2)),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Conv1D(filters=FILTERS,kernel_size=KERNEL_SIZE, activation="relu"),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.MaxPool1D(pool_size=(2)),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Conv1D(filters=FILTERS,kernel_size=KERNEL_SIZE, activation="relu"),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.MaxPool1D(pool_size=(2)),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Conv1D(filters=FILTERS,kernel_size=KERNEL_SIZE,activation="relu"),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.MaxPool1D(pool_size=(2)),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(512,activation="relu"),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(512,activation="relu"),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(512,activation="relu"),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(512,activation="relu"),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(2,activation="softmax")
])
return model
#Filter & Normalization functions that were used for pre-processing
#def filter(ecg_signal):
# #4th Order Butterworth Highpass Filter at 0.5Hz
# highpass = 0.5
# nyq = 0.5 * SAMPLE_FREQUENCY
# cutoff = highpass / nyq
# order = 4
# b, a = scipy.signal.butter(order, cutoff, btype='highpass', analog=False)
# y = scipy.signal.filtfilt(b, a, ecg_signal, axis=-1)
# return (y)
#def normalise_signal(ecg_signal):
# mean = ecg_signal.mean()
# std = ecg_signal.std()
# normalised_signal = []
#
# for voltage in np.nditer(ecg_signal):
# normalised_signal.append((
# (voltage - mean) / std
# ))
# return np.array(normalised_signal)
if __name__ == "__main__":
main()