diff --git a/ogusa/tests/test_household.py b/ogusa/tests/test_household.py index 4974f3bb7..d29a96ce4 100644 --- a/ogusa/tests/test_household.py +++ b/ogusa/tests/test_household.py @@ -156,7 +156,7 @@ def test_get_cons(model_vars, params, expected): retire = 2 method = 'SS' test_params_ss = (e, sigma, beta, g_y, chi_b, theta, tau_bq, rho, lambdas, - j, J, S, analytical_mtrs, etr_params[-1, :, :], + j, J, S, 'DEP', analytical_mtrs, etr_params[-1, :, :], mtry_params[-1, :, :], h_wealth, p_wealth, m_wealth, tau_payroll, retire, method) r = 0.05 @@ -179,9 +179,9 @@ def test_get_cons(model_vars, params, expected): etr_params_tpi[:, i] = np.diag(np.transpose(etr_params[:, :S, i])) mtry_params_tpi[:, i] = np.diag(np.transpose(mtry_params[:, :S, i])) test_params_tpi = (e, sigma, beta, g_y, chi_b, theta, tau_bq, rho, - lambdas, j, J, S, analytical_mtrs, etr_params_tpi, - mtry_params_tpi, h_wealth, p_wealth, m_wealth, - tau_payroll, retire, method_tpi) + lambdas, j, J, S, 'DEP', analytical_mtrs, + etr_params_tpi, mtry_params_tpi, h_wealth, p_wealth, + m_wealth, tau_payroll, retire, method_tpi) r_vec = np.array([0.05, 0.03, 0.04]) w_vec = np.array([1.2, 0.9, 0.8]) BQ_vec = np.array([0.1, 0.05, 0.15]) @@ -189,7 +189,6 @@ def test_get_cons(model_vars, params, expected): test_vars_tpi = (r_vec, w_vec, b, b_splus1, b_splus2, n, BQ_vec, factor, T_H_vec) expected_tpi = np.array([300.977031, 2.719866638, -139.9187228]) - test_data = [(test_vars_ss, test_params_ss, expected_ss), (test_vars_tpi, test_params_tpi, expected_tpi)] @@ -206,8 +205,9 @@ def test_FOC_savings(model_vars, params, expected): # model_vars in order: r, w, b, b_splus1, n, BQ, factor, T_H # params in order: e, sigma, g_y, theta, b_ellipse, upsilon, chi_n, -# ltilde, tau_bq, lambdas, j, J, S, analytical_mtrs, etr_params, -# mtrx_params, h_wealth, p_wealth, m_wealth, tau_payroll, retire, method +# ltilde, tau_bq, lambdas, j, J, S, tax_func_type, analytical_mtrs, +# etr_params, mtrx_params, h_wealth, p_wealth, m_wealth, tau_payroll, +# retire, method # Define variables for test of SS version e = np.array([1.0, 0.9, 1.4]) sigma = 1.5 @@ -248,9 +248,10 @@ def test_FOC_savings(model_vars, params, expected): retire = 2 method = 'SS' test_params_ss = (e, sigma, g_y, theta, b_ellipse, upsilon, chi_n, - l_tilde, tau_bq, lambdas, j, J, S, analytical_mtrs, - etr_params[-1, :, :], mtrx_params[-1, :, :], h_wealth, - p_wealth, m_wealth, tau_payroll, retire, method) + l_tilde, tau_bq, lambdas, j, J, S, 'DEP', + analytical_mtrs, etr_params[-1, :, :], + mtrx_params[-1, :, :], h_wealth, p_wealth, m_wealth, + tau_payroll, retire, method) r = 0.05 w = 1.2 b = np.array([0.0, 0.8, 0.5]) @@ -271,9 +272,10 @@ def test_FOC_savings(model_vars, params, expected): etr_params_tpi[:, i] = np.diag(np.transpose(etr_params[:, :S, i])) mtrx_params_tpi[:, i] = np.diag(np.transpose(mtrx_params[:, :S, i])) test_params_tpi = (e, sigma, g_y, theta, b_ellipse, upsilon, chi_n, - l_tilde, tau_bq, lambdas, j, J, S, analytical_mtrs, - etr_params_tpi, mtrx_params_tpi, h_wealth, - p_wealth, m_wealth, tau_payroll, retire, method_tpi) + l_tilde, tau_bq, lambdas, j, J, S, 'DEP', + analytical_mtrs, etr_params_tpi, mtrx_params_tpi, + h_wealth, p_wealth, m_wealth, tau_payroll, retire, + method_tpi) r_vec = np.array([0.05, 0.03, 0.04]) w_vec = np.array([1.2, 0.9, 0.8]) BQ_vec = np.array([0.1, 0.05, 0.15])