diff --git a/enhance.py b/enhance.py index bd1e587..8f22ae5 100755 --- a/enhance.py +++ b/enhance.py @@ -41,6 +41,7 @@ add_arg('--rendering-overlap', default=32, type=int, help='Number of pixels padding around each tile.') add_arg('--model', default='small', type=str, help='Name of the neural network to load/save.') add_arg('--train', default=False, type=str, help='File pattern to load for training.') +add_arg('--train-scales', default=0, type=int, help='Randomly resize images this many times.') add_arg('--train-blur', default=None, type=int, help='Sigma value for gaussian blur preprocess.') add_arg('--train-noise', default=None, type=float, help='Radius for preprocessing gaussian blur.') add_arg('--train-jpeg', default=None, type=int, help='JPEG compression level in preprocessing.') @@ -52,7 +53,7 @@ add_arg('--buffer-size', default=1500, type=int, help='Total image fragments kept in cache.') add_arg('--buffer-similar', default=5, type=int, help='Fragments cached for each image loaded.') add_arg('--learning-rate', default=1E-4, type=float, help='Parameter for the ADAM optimizer.') -add_arg('--learning-period', default=50, type=int, help='How often to decay the learning rate.') +add_arg('--learning-period', default=75, type=int, help='How often to decay the learning rate.') add_arg('--learning-decay', default=0.5, type=float, help='How much to decay the learning rate.') add_arg('--generator-upscale', default=2, type=int, help='Steps of 2x up-sampling as post-process.') add_arg('--generator-downscale',default=0, type=int, help='Steps of 2x down-sampling as preprocess.') @@ -161,8 +162,9 @@ def add_to_buffer(self, f): filename = os.path.join(self.cwd, f) try: orig = PIL.Image.open(filename).convert('RGB') - # if all(s > args.batch_shape * 2 for s in orig.size): - # orig = orig.resize((orig.size[0]//2, orig.size[1]//2), resample=PIL.Image.LANCZOS) + scale = 2 ** random.randint(0, args.train_scales) + if scale > 1 and all(s > args.batch_shape * scale for s in orig.size): + orig = orig.resize((orig.size[0]//scale, orig.size[1]//scale), resample=PIL.Image.LANCZOS) if any(s < args.batch_shape for s in orig.size): raise ValueError('Image is too small for training with size {}'.format(orig.size)) except Exception as e: @@ -171,19 +173,20 @@ def add_to_buffer(self, f): self.files.remove(f) return - seed = orig.filter(PIL.ImageFilter.GaussianBlur(radius=args.train_blur)) if args.train_blur else orig - seed = seed.resize((orig.size[0]//args.zoom, orig.size[1]//args.zoom), resample=PIL.Image.LANCZOS) - + if args.train_blur: + seed = orig.filter(PIL.ImageFilter.GaussianBlur(radius=random.randint(0, args.train_blur*2))) + if args.zoom > 1: + seed = seed.resize((orig.size[0]//args.zoom, orig.size[1]//args.zoom), resample=PIL.Image.LANCZOS) if args.train_jpeg: buffer = io.BytesIO() seed.save(buffer, format='jpeg', quality=args.train_jpeg+random.randrange(-15,+15)) seed = PIL.Image.open(buffer) + orig = scipy.misc.fromimage(orig, mode='RGB').astype(np.float32) seed = scipy.misc.fromimage(seed, mode='RGB').astype(np.float32) - seed += scipy.random.normal(scale=args.train_noise, size=(seed.shape[0], seed.shape[1], 1))\ - if args.train_noise else 0.0 - orig = scipy.misc.fromimage(orig).astype(np.float32) + if args.train_noise: + seed += scipy.random.normal(scale=args.train_noise, size=(seed.shape[0], seed.shape[1], 1)) ** 4.0 for _ in range(args.buffer_similar): h = random.randint(0, seed.shape[0] - self.seed_shape)