You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+6-6Lines changed: 6 additions & 6 deletions
Original file line number
Diff line number
Diff line change
@@ -76,18 +76,18 @@ Interactively using the documentation requires `jupyter`, and building a static
76
76
If this software has benefited your research, please consider citing:
77
77
78
78
### Formalism
79
-
[1]: T. Hangleiter, P. Cerfontaine, and H. Bluhm, "Filterfunction formalism and software package to compute quantum processes of gate sequences for classical non-markovian noise," (2021), [arXiv:2103.02403](https://arxiv.org/abs/2103.02403)
79
+
[1]: T. Hangleiter, P. Cerfontaine, and H. Bluhm. Filter-function formalism and software package to compute quantum processes of gate sequences for classical non-Markovian noise. Phys. Rev. Res. **3**, 043047 (2021). [10.1103/PhysRevResearch.3.043047](https://doi.org/10.1103/PhysRevResearch.3.043047). [arXiv:2103.02403](https://arxiv.org/abs/2103.02403).
80
80
81
-
[2]: P. Cerfontaine, T. Hangleiter, and H. Bluhm, "Filter functions for quantum processes under correlated noise," (2021),[arXiv:2103.02385](https://arxiv.org/abs/2103.02385).
81
+
[2]: P. Cerfontaine, T. Hangleiter, and H. Bluhm. Filter Functions for Quantum Processes under Correlated Noise. Phys. Rev. Lett. **127**, 170403 (2021). [10.1103/PhysRevLett.127.170403](https://doi.org/10.1103/PhysRevLett.127.170403).[arXiv:2103.02385](https://arxiv.org/abs/2103.02385).
82
82
83
83
### Gradients
84
-
[3]: I. N. M. Le, J. D. Teske, T. Hangleiter, P. Cerfontaine, and Hendrik Bluhm, "Analytic Filter Function Derivatives for Quantum Optimal Control," (2021),[arXiv:2103.09126](https://arxiv.org/abs/2103.09126).
84
+
[3]: I. N. M. Le, J. D. Teske, T. Hangleiter, P. Cerfontaine, and Hendrik Bluhm, "Analytic Filter Function Derivatives for Quantum Optimal Control," (2021).[arXiv:2103.09126](https://arxiv.org/abs/2103.09126).
85
85
86
86
### Software
87
-
[4]: T. Hangleiter, I. N. M. Le, and J. D. Teske, "filter_functions: A package for efficient numerical calculation of generalized filter functions to describe the effect of noise on quantum gate operations," (2021). [doi:10.5281/zenodo.4575001](http://doi.org/10.5281/zenodo.4575001)
87
+
[4]: T. Hangleiter, I. N. M. Le, and J. D. Teske, "filter_functions: A package for efficient numerical calculation of generalized filter functions to describe the effect of noise on quantum gate operations," (2021). [10.5281/zenodo.4575001](http://doi.org/10.5281/zenodo.4575001).
88
88
89
89
90
90
## Additional References
91
-
[5]: Cywinski, L., Lutchyn, R. M., Nave, C. P., & Das Sarma, S. (2008). How to enhance dephasing time in superconducting qubits. Physical Review B - Condensed Matter and Materials Physics, 77(17), 1–11. [https://doi.org/10.1103/PhysRevB.77.174509](https://doi.org/10.1103/PhysRevB.77.174509)
91
+
[5]: L. Cywinski, R. M. Lutchyn, C. P. Nave, and S. Das Sarma. How to enhance dephasing time in superconducting qubits. Phys. Rev. B **77**, 174509 (2008). [10.1103/PhysRevB.77.174509](https://doi.org/10.1103/PhysRevB.77.174509).
92
92
93
-
[6]: Green, T. J., Sastrawan, J., Uys, H., & Biercuk, M. J. (2013). Arbitrary quantum control of qubits in the presence of universal noise. New Journal of Physics, 15(9), 095004. [https://doi.org/10.1088/1367-2630/15/9/095004](https://doi.org/10.1088/1367-2630/15/9/095004)
93
+
[6]: T. J Green., J. Sastrawan, H. Uys, and M. J. Biercuk. Arbitrary quantum control of qubits in the presence of universal noise. *New J. Phys.***15**, 095004 (2013). [10.1088/1367-2630/15/9/095004](https://doi.org/10.1088/1367-2630/15/9/095004).
0 commit comments