forked from triton-lang/triton
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path02-fused-softmax.py
217 lines (178 loc) · 8.31 KB
/
02-fused-softmax.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
"""
Fused Softmax
=============
In this tutorial, you will write a fused softmax operation that is significantly faster
than PyTorch's native op for a particular class of matrices: those whose rows can fit in
the GPU's SRAM.
In doing so, you will learn about:
* The benefits of kernel fusion for bandwidth-bound operations.
* Reduction operators in Triton.
"""
# %%
# Motivations
# -----------
#
# Custom GPU kernels for elementwise additions are educationally valuable but won't get you very far in practice.
# Let us consider instead the case of a simple (numerically stabilized) softmax operation:
import torch
import triton
import triton.language as tl
from triton.runtime import driver
def naive_softmax(x):
"""Compute row-wise softmax of X using native pytorch
We subtract the maximum element in order to avoid overflows. Softmax is invariant to
this shift.
"""
# read MN elements ; write M elements
x_max = x.max(dim=1)[0]
# read MN + M elements ; write MN elements
z = x - x_max[:, None]
# read MN elements ; write MN elements
numerator = torch.exp(z)
# read MN elements ; write M elements
denominator = numerator.sum(dim=1)
# read MN + M elements ; write MN elements
ret = numerator / denominator[:, None]
# in total: read 5MN + 2M elements ; wrote 3MN + 2M elements
return ret
# %%
# When implemented naively in PyTorch, computing :code:`y = naive_softmax(x)` for :math:`x \in R^{M \times N}`
# requires reading :math:`5MN + 2M` elements from DRAM and writing back :math:`3MN + 2M` elements.
# This is obviously wasteful; we'd prefer to have a custom "fused" kernel that only reads
# X once and does all the necessary computations on-chip.
# Doing so would require reading and writing back only :math:`MN` bytes, so we could
# expect a theoretical speed-up of ~4x (i.e., :math:`(8MN + 4M) / 2MN`).
# The `torch.jit.script` flags aims to perform this kind of "kernel fusion" automatically
# but, as we will see later, it is still far from ideal.
# %%
# Compute Kernel
# --------------
#
# Our softmax kernel works as follows: each program loads a set of rows of the input matrix X strided by number of programs,
# normalizes it and writes back the result to the output Y.
#
# Note that one important limitation of Triton is that each block must have a
# power-of-two number of elements, so we need to internally "pad" each row and guard the
# memory operations properly if we want to handle any possible input shapes:
@triton.jit
def softmax_kernel(output_ptr, input_ptr, input_row_stride, output_row_stride, n_rows, n_cols, BLOCK_SIZE: tl.constexpr,
num_stages: tl.constexpr):
# starting row of the program
row_start = tl.program_id(0)
row_step = tl.num_programs(0)
for row_idx in tl.range(row_start, n_rows, row_step, num_stages=num_stages):
# The stride represents how much we need to increase the pointer to advance 1 row
row_start_ptr = input_ptr + row_idx * input_row_stride
# The block size is the next power of two greater than n_cols, so we can fit each
# row in a single block
col_offsets = tl.arange(0, BLOCK_SIZE)
input_ptrs = row_start_ptr + col_offsets
# Load the row into SRAM, using a mask since BLOCK_SIZE may be > than n_cols
mask = col_offsets < n_cols
row = tl.load(input_ptrs, mask=mask, other=-float('inf'))
# Subtract maximum for numerical stability
row_minus_max = row - tl.max(row, axis=0)
# Note that exponentiation in Triton is fast but approximate (i.e., think __expf in CUDA)
numerator = tl.exp(row_minus_max)
denominator = tl.sum(numerator, axis=0)
softmax_output = numerator / denominator
# Write back output to DRAM
output_row_start_ptr = output_ptr + row_idx * output_row_stride
output_ptrs = output_row_start_ptr + col_offsets
tl.store(output_ptrs, softmax_output, mask=mask)
# %%
# We can create a helper function that enqueues the kernel and its (meta-)arguments for any given input tensor.
device = torch.cuda.current_device()
properties = driver.active.utils.get_device_properties(device)
NUM_SM = properties["multiprocessor_count"]
NUM_REGS = properties["max_num_regs"]
SIZE_SMEM = properties["max_shared_mem"]
WARP_SIZE = properties["warpSize"]
target = triton.runtime.driver.active.get_current_target()
kernels = {}
def softmax(x):
n_rows, n_cols = x.shape
# The block size of each loop iteration is the smallest power of two greater than the number of columns in `x`
BLOCK_SIZE = triton.next_power_of_2(n_cols)
# Another trick we can use is to ask the compiler to use more threads per row by
# increasing the number of warps (`num_warps`) over which each row is distributed.
# You will see in the next tutorial how to auto-tune this value in a more natural
# way so you don't have to come up with manual heuristics yourself.
num_warps = 8
# Number of software piepling stages.
num_stages = 4 if SIZE_SMEM > 200000 else 2
# Allocate output
y = torch.empty_like(x)
# pre-compile kernel to get register usage and compute thread occupancy.
kernel, num_programs = kernels.get(BLOCK_SIZE, (None, 0))
if kernel is None:
kernel = softmax_kernel.warmup(y, x, x.stride(0), y.stride(0), n_rows, n_cols, BLOCK_SIZE=BLOCK_SIZE,
num_stages=num_stages, num_warps=num_warps, grid=(1, ))
kernel._init_handles()
n_regs = kernel.n_regs
size_smem = kernel.metadata.shared
occupancy = NUM_REGS // (n_regs * WARP_SIZE * num_warps)
occupancy = min(occupancy, SIZE_SMEM // size_smem)
num_programs = NUM_SM * occupancy
kernels[BLOCK_SIZE] = (kernel, num_programs)
num_programs = min(num_programs, n_rows)
# Create a number of persistent programs.
kernel[(num_programs, 1, 1)](
y,
x,
x.stride(0),
y.stride(0),
n_rows,
n_cols,
)
return y
# %%
# Unit Test
# ---------
# %%
# We make sure that we test our kernel on a matrix with an irregular number of rows and columns.
# This will allow us to verify that our padding mechanism works.
torch.manual_seed(0)
x = torch.randn(1823, 781, device='cuda')
y_triton = softmax(x)
y_torch = torch.softmax(x, axis=1)
assert torch.allclose(y_triton, y_torch), (y_triton, y_torch)
# %%
# As expected, the results are identical.
# %%
# Benchmark
# ---------
#
# Here we will benchmark our operation as a function of the number of columns in the input matrix -- assuming 4096 rows.
# We will then compare its performance against (1) :code:`torch.softmax` and (2) the :code:`naive_softmax` defined above.
@triton.testing.perf_report(
triton.testing.Benchmark(
x_names=['N'], # argument names to use as an x-axis for the plot
x_vals=[128 * i for i in range(2, 100)], # different possible values for `x_name`
line_arg='provider', # argument name whose value corresponds to a different line in the plot
line_vals=['triton', 'torch'], # possible values for `line_arg``
line_names=[
"Triton",
"Torch",
], # label name for the lines
styles=[('blue', '-'), ('green', '-')], # line styles
ylabel="GB/s", # label name for the y-axis
plot_name="softmax-performance", # name for the plot. Used also as a file name for saving the plot.
args={'M': 4096}, # values for function arguments not in `x_names` and `y_name`
))
def benchmark(M, N, provider):
x = torch.randn(M, N, device='cuda', dtype=torch.float32)
stream = torch.cuda.Stream()
torch.cuda.set_stream(stream)
if provider == 'torch':
ms = triton.testing.do_bench(lambda: torch.softmax(x, axis=-1))
if provider == 'triton':
ms = triton.testing.do_bench(lambda: softmax(x))
gbps = lambda ms: 2 * x.nelement() * x.element_size() * 1e-9 / (ms * 1e-3)
return gbps(ms)
benchmark.run(show_plots=True, print_data=True)
# %%
# In the above plot, we can see that:
# - Triton is 4x faster than the Torch JIT. This confirms our suspicions that the Torch JIT does not do any fusion here.
# - Triton is noticeably faster than :code:`torch.softmax` -- in addition to being **easier to read, understand and maintain**.
# Note however that the PyTorch `softmax` operation is more general and will work on tensors of any shape.