|
| 1 | +# Copyright 2019 The Cirq Developers |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# https://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | +"""An MPS simulator. |
| 15 | +
|
| 16 | +This is based on this paper: |
| 17 | +https://arxiv.org/abs/2002.07730 |
| 18 | +
|
| 19 | +TODO(tonybruguier): Currently, only linear circuits are handled, while the paper |
| 20 | +handles more general topologies. |
| 21 | +
|
| 22 | +TODO(tonybruguier): Currently, numpy is used for tensor computations. For speed |
| 23 | +switch to QIM for speed. |
| 24 | +""" |
| 25 | + |
| 26 | +import collections |
| 27 | +import math |
| 28 | +from typing import Any, Dict, List, Iterator, Sequence |
| 29 | + |
| 30 | +import numpy as np |
| 31 | + |
| 32 | +import cirq |
| 33 | +from cirq import circuits, study, ops, protocols, value |
| 34 | +from cirq.sim import simulator |
| 35 | + |
| 36 | + |
| 37 | +class MPSSimulator(simulator.SimulatesSamples, simulator.SimulatesIntermediateState): |
| 38 | + """An efficient simulator for MPS circuits.""" |
| 39 | + |
| 40 | + def __init__(self, seed: 'cirq.RANDOM_STATE_OR_SEED_LIKE' = None): |
| 41 | + """Creates instance of `MPSSimulator`. |
| 42 | +
|
| 43 | + Args: |
| 44 | + seed: The random seed to use for this simulator. |
| 45 | + """ |
| 46 | + self.init = True |
| 47 | + self._prng = value.parse_random_state(seed) |
| 48 | + |
| 49 | + def _base_iterator( |
| 50 | + self, circuit: circuits.Circuit, qubit_order: ops.QubitOrderOrList, initial_state: int |
| 51 | + ) -> Iterator['cirq.MPSSimulatorStepResult']: |
| 52 | + """Iterator over MPSSimulatorStepResult from Moments of a Circuit |
| 53 | +
|
| 54 | + Args: |
| 55 | + circuit: The circuit to simulate. |
| 56 | + qubit_order: Determines the canonical ordering of the qubits. This |
| 57 | + is often used in specifying the initial state, i.e. the |
| 58 | + ordering of the computational basis states. |
| 59 | + initial_state: The initial state for the simulation in the |
| 60 | + computational basis. Represented as a big endian int. |
| 61 | +
|
| 62 | +
|
| 63 | + Yields: |
| 64 | + MPSStepResult from simulating a Moment of the Circuit. |
| 65 | + """ |
| 66 | + qubits = ops.QubitOrder.as_qubit_order(qubit_order).order_for(circuit.all_qubits()) |
| 67 | + |
| 68 | + qubit_map = {q: i for i, q in enumerate(qubits)} |
| 69 | + |
| 70 | + if len(circuit) == 0: |
| 71 | + yield MPSSimulatorStepResult( |
| 72 | + measurements={}, state=MPSState(qubit_map, initial_state=initial_state) |
| 73 | + ) |
| 74 | + return |
| 75 | + |
| 76 | + state = MPSState(qubit_map, initial_state=initial_state) |
| 77 | + |
| 78 | + for moment in circuit: |
| 79 | + measurements: Dict[str, List[int]] = collections.defaultdict(list) |
| 80 | + |
| 81 | + for op in moment: |
| 82 | + if isinstance(op.gate, ops.MeasurementGate): |
| 83 | + key = str(protocols.measurement_key(op)) |
| 84 | + measurements[key].extend(state.perform_measurement(op.qubits, self._prng)) |
| 85 | + elif protocols.has_unitary(op): |
| 86 | + state.apply_unitary(op) |
| 87 | + else: |
| 88 | + raise NotImplementedError(f"Unrecognized operation: {op!r}") |
| 89 | + |
| 90 | + yield MPSSimulatorStepResult(measurements=measurements, state=state) |
| 91 | + |
| 92 | + def _simulator_iterator( |
| 93 | + self, |
| 94 | + circuit: circuits.Circuit, |
| 95 | + param_resolver: study.ParamResolver, |
| 96 | + qubit_order: ops.QubitOrderOrList, |
| 97 | + initial_state: int, |
| 98 | + ) -> Iterator: |
| 99 | + """See definition in `cirq.SimulatesIntermediateState`. |
| 100 | +
|
| 101 | + Args: |
| 102 | + inital_state: An integer specifying the inital |
| 103 | + state in the computational basis. |
| 104 | + """ |
| 105 | + param_resolver = param_resolver or study.ParamResolver({}) |
| 106 | + resolved_circuit = protocols.resolve_parameters(circuit, param_resolver) |
| 107 | + self._check_all_resolved(resolved_circuit) |
| 108 | + actual_initial_state = 0 if initial_state is None else initial_state |
| 109 | + |
| 110 | + return self._base_iterator(resolved_circuit, qubit_order, actual_initial_state) |
| 111 | + |
| 112 | + def _create_simulator_trial_result( |
| 113 | + self, |
| 114 | + params: study.ParamResolver, |
| 115 | + measurements: Dict[str, np.ndarray], |
| 116 | + final_simulator_state, |
| 117 | + ): |
| 118 | + |
| 119 | + return MPSTrialResult( |
| 120 | + params=params, measurements=measurements, final_simulator_state=final_simulator_state |
| 121 | + ) |
| 122 | + |
| 123 | + def _run( |
| 124 | + self, circuit: circuits.Circuit, param_resolver: study.ParamResolver, repetitions: int |
| 125 | + ) -> Dict[str, List[np.ndarray]]: |
| 126 | + |
| 127 | + param_resolver = param_resolver or study.ParamResolver({}) |
| 128 | + resolved_circuit = protocols.resolve_parameters(circuit, param_resolver) |
| 129 | + self._check_all_resolved(resolved_circuit) |
| 130 | + |
| 131 | + measurements = {} # type: Dict[str, List[np.ndarray]] |
| 132 | + if repetitions == 0: |
| 133 | + for _, op, _ in resolved_circuit.findall_operations_with_gate_type(ops.MeasurementGate): |
| 134 | + measurements[protocols.measurement_key(op)] = np.empty([0, 1]) |
| 135 | + |
| 136 | + for _ in range(repetitions): |
| 137 | + all_step_results = self._base_iterator( |
| 138 | + resolved_circuit, qubit_order=ops.QubitOrder.DEFAULT, initial_state=0 |
| 139 | + ) |
| 140 | + |
| 141 | + for step_result in all_step_results: |
| 142 | + for k, v in step_result.measurements.items(): |
| 143 | + if not k in measurements: |
| 144 | + measurements[k] = [] |
| 145 | + measurements[k].append(np.array(v, dtype=int)) |
| 146 | + |
| 147 | + return {k: np.array(v) for k, v in measurements.items()} |
| 148 | + |
| 149 | + def _check_all_resolved(self, circuit): |
| 150 | + """Raises if the circuit contains unresolved symbols.""" |
| 151 | + if protocols.is_parameterized(circuit): |
| 152 | + unresolved = [ |
| 153 | + op for moment in circuit for op in moment if protocols.is_parameterized(op) |
| 154 | + ] |
| 155 | + raise ValueError( |
| 156 | + 'Circuit contains ops whose symbols were not specified in ' |
| 157 | + 'parameter sweep. Ops: {}'.format(unresolved) |
| 158 | + ) |
| 159 | + |
| 160 | + |
| 161 | +class MPSTrialResult(simulator.SimulationTrialResult): |
| 162 | + def __init__( |
| 163 | + self, |
| 164 | + params: study.ParamResolver, |
| 165 | + measurements: Dict[str, np.ndarray], |
| 166 | + final_simulator_state: 'MPSState', |
| 167 | + ) -> None: |
| 168 | + super().__init__( |
| 169 | + params=params, measurements=measurements, final_simulator_state=final_simulator_state |
| 170 | + ) |
| 171 | + |
| 172 | + self.final_state = final_simulator_state |
| 173 | + |
| 174 | + def __str__(self) -> str: |
| 175 | + samples = super().__str__() |
| 176 | + final = self._final_simulator_state |
| 177 | + return f'measurements: {samples}\noutput state: {final}' |
| 178 | + |
| 179 | + |
| 180 | +class MPSSimulatorStepResult(simulator.StepResult): |
| 181 | + """A `StepResult` that includes `StateVectorMixin` methods.""" |
| 182 | + |
| 183 | + def __init__(self, state, measurements): |
| 184 | + """Results of a step of the simulator. |
| 185 | + Attributes: |
| 186 | + state: A MPSState |
| 187 | + measurements: A dictionary from measurement gate key to measurement |
| 188 | + results, ordered by the qubits that the measurement operates on. |
| 189 | + qubit_map: A map from the Qubits in the Circuit to the the index |
| 190 | + of this qubit for a canonical ordering. This canonical ordering |
| 191 | + is used to define the state vector (see the state_vector() |
| 192 | + method). |
| 193 | + """ |
| 194 | + self.measurements = measurements |
| 195 | + self.state = state.copy() |
| 196 | + |
| 197 | + def __str__(self) -> str: |
| 198 | + def bitstring(vals): |
| 199 | + return ','.join(str(v) for v in vals) |
| 200 | + |
| 201 | + results = sorted([(key, bitstring(val)) for key, val in self.measurements.items()]) |
| 202 | + |
| 203 | + if len(results) == 0: |
| 204 | + measurements = '' |
| 205 | + else: |
| 206 | + measurements = ' '.join([f'{key}={val}' for key, val in results]) + '\n' |
| 207 | + |
| 208 | + final = self.state |
| 209 | + |
| 210 | + return f'{measurements}{final}' |
| 211 | + |
| 212 | + def _simulator_state(self): |
| 213 | + return self.state |
| 214 | + |
| 215 | + def sample( |
| 216 | + self, |
| 217 | + qubits: List[ops.Qid], |
| 218 | + repetitions: int = 1, |
| 219 | + seed: 'cirq.RANDOM_STATE_OR_SEED_LIKE' = None, |
| 220 | + ) -> np.ndarray: |
| 221 | + |
| 222 | + measurements: List[int] = [] |
| 223 | + |
| 224 | + for _ in range(repetitions): |
| 225 | + measurements.append( |
| 226 | + self.state.perform_measurement( |
| 227 | + qubits, value.parse_random_state(seed), collapse_state_vector=False |
| 228 | + ) |
| 229 | + ) |
| 230 | + |
| 231 | + return np.array(measurements, dtype=int) |
| 232 | + |
| 233 | + |
| 234 | +@value.value_equality |
| 235 | +class MPSState: |
| 236 | + """A state of the MPS simulation.""" |
| 237 | + |
| 238 | + def __init__(self, qubit_map, initial_state=0): |
| 239 | + self.qubit_map = qubit_map |
| 240 | + self.M = [] |
| 241 | + for qubit in qubit_map.keys(): |
| 242 | + d = qubit.dimension |
| 243 | + x = np.zeros( |
| 244 | + ( |
| 245 | + 1, |
| 246 | + 1, |
| 247 | + d, |
| 248 | + ) |
| 249 | + ) |
| 250 | + x[0, 0, (initial_state % d)] = 1.0 |
| 251 | + self.M.append(x) |
| 252 | + initial_state = initial_state // d |
| 253 | + self.M = self.M[::-1] |
| 254 | + self.threshold = 1e-3 |
| 255 | + |
| 256 | + def __str__(self) -> str: |
| 257 | + return str(self.M) |
| 258 | + |
| 259 | + def _value_equality_values_(self) -> Any: |
| 260 | + return self.qubit_map, self.M, self.threshold |
| 261 | + |
| 262 | + def copy(self) -> 'MPSState': |
| 263 | + state = MPSState(self.qubit_map) |
| 264 | + state.M = [x.copy() for x in self.M] |
| 265 | + state.threshold = self.threshold |
| 266 | + return state |
| 267 | + |
| 268 | + def state_vector(self): |
| 269 | + M = np.ones((1, 1)) |
| 270 | + for i in range(len(self.M)): |
| 271 | + M = np.einsum('ni,npj->pij', M, self.M[i]) |
| 272 | + M = M.reshape(M.shape[0], -1) |
| 273 | + assert M.shape[0] == 1 |
| 274 | + return M[0, :] |
| 275 | + |
| 276 | + def to_numpy(self) -> np.ndarray: |
| 277 | + return self.state_vector() |
| 278 | + |
| 279 | + def apply_unitary(self, op: 'cirq.Operation'): |
| 280 | + idx = [self.qubit_map[qubit] for qubit in op.qubits] |
| 281 | + U = protocols.unitary(op).reshape([qubit.dimension for qubit in op.qubits] * 2) |
| 282 | + |
| 283 | + if len(idx) == 1: |
| 284 | + n = idx[0] |
| 285 | + self.M[n] = np.einsum('ij,mnj->mni', U, self.M[n]) |
| 286 | + elif len(idx) == 2: |
| 287 | + n = idx[0] |
| 288 | + p = idx[1] |
| 289 | + if abs(n - p) != 1: |
| 290 | + raise ValueError('Can only handle continguous qubits') |
| 291 | + T = np.einsum('klij,mni,npj->mkpl', U, self.M[n], self.M[p]) |
| 292 | + X, S, Y = np.linalg.svd(T.reshape([T.shape[0] * T.shape[1], T.shape[2] * T.shape[3]])) |
| 293 | + X = X.reshape([T.shape[0], T.shape[1], -1]) |
| 294 | + Y = Y.reshape([-1, T.shape[2], T.shape[3]]) |
| 295 | + |
| 296 | + S = np.asarray([math.sqrt(x) for x in S]) |
| 297 | + |
| 298 | + nkeep = 0 |
| 299 | + for i in range(S.shape[0]): |
| 300 | + if S[i] >= S[0] * self.threshold: |
| 301 | + nkeep = i + 1 |
| 302 | + |
| 303 | + X = X[:, :, :nkeep] |
| 304 | + S = np.diag(S[:nkeep]) |
| 305 | + Y = Y[:nkeep, :, :] |
| 306 | + |
| 307 | + self.M[n] = np.einsum('mis,sn->mni', X, S) |
| 308 | + self.M[p] = np.einsum('ns,spj->npj', S, Y) |
| 309 | + else: |
| 310 | + raise ValueError('Can only handle 1 and 2 qubit operations') |
| 311 | + |
| 312 | + def perform_measurement( |
| 313 | + self, qubits: Sequence[ops.Qid], prng: np.random.RandomState, collapse_state_vector=True |
| 314 | + ) -> List[int]: |
| 315 | + results: List[int] = [] |
| 316 | + |
| 317 | + if collapse_state_vector: |
| 318 | + state = self |
| 319 | + else: |
| 320 | + state = self.copy() |
| 321 | + |
| 322 | + for qubit in qubits: |
| 323 | + n = state.qubit_map[qubit] |
| 324 | + |
| 325 | + M = np.ones((1, 1)) |
| 326 | + for i in range(len(state.M)): |
| 327 | + if i == n: |
| 328 | + M = np.einsum('ni,npj->pij', M, state.M[i]) |
| 329 | + else: |
| 330 | + M = np.einsum('ni,npj->pi', M, state.M[i]) |
| 331 | + M = M.reshape(M.shape[0], -1) |
| 332 | + assert M.shape[0] == 1 |
| 333 | + M = M.reshape(-1) |
| 334 | + probs = [abs(x) ** 2 for x in M] |
| 335 | + |
| 336 | + # Because the computation is approximate, the probabilities do not |
| 337 | + # necessarily add up to 1.0, and thus we re-normalize them. |
| 338 | + norm_probs = [x / sum(probs) for x in probs] |
| 339 | + |
| 340 | + d = qubit.dimension |
| 341 | + result: int = int(prng.choice(d, p=norm_probs)) |
| 342 | + |
| 343 | + renormalizer = np.zeros((d, d)) |
| 344 | + renormalizer[result][result] = 1.0 / math.sqrt(probs[result]) |
| 345 | + |
| 346 | + state.M[n] = np.einsum('ij,mnj->mni', renormalizer, state.M[n]) |
| 347 | + |
| 348 | + results.append(result) |
| 349 | + |
| 350 | + return results |
0 commit comments