Skip to content
/ PPG Public

Photoplethysmogram-based Real-Time Cognitive Load Assessment Using Multi-Feature Fusion Model

License

Notifications You must be signed in to change notification settings

qiriro/PPG

Repository files navigation

Build Status Python License Watchers Stargazers Forks

PPG

Photoplethysmogram-based Real-Time Cognitive Load Assessment Using Multi-Feature Fusion Model

Installation

Requirements

Installing with Virtualenv

On Unix, Linux, BSD, macOS, and Cygwin:

git clone https://github.com/iRB-Lab/PPG.git
cd PPG
virtualenv venv
source venv/bin/activate
pip install -r requirements.txt

Quick Start

On Unix, Linux, BSD, macOS, and Cygwin:

./scripts/process_data.sh
./scripts/classify.sh

Usage

Data Processing

Raw data segmentation
python segment.py
Preprocessing
python preprocess.py
Feature extraction
python extract.py
Training set and test set spliting
python split.py

Classification

python classify.py

Data Definition

PPG Signal Data

  • Location: data/raw/
  • Filename format: <participant>-<label>.txt
Sample Data
109
110
109
109
...

Segmented Signal Data

  • Location: data/segmented/
  • Filename format: <participant>.json
Sample Data
{
  "<label>": {
    "sample_rate": <value>,
    "signal": [ ... ]
  },
  ...
}

Preprocessed Data

  • Location: data/preprocessed/
  • Filename format: <participant>.json
Sample Data
{
  "<label>": {
    "sample_rate": <value>,
    "single_waveforms": [
      [ ... ],
      ...
    ]
  },
  ...
}

Extracted Feature Data

  • Location: data/extracted/
  • Filename format: <participant>.json
Sample Data
{
  "<label>": {
    "sample_rate": <value>,
    "ppg45": [
        [ ... ],
        ...
    ],
    "svri": [ ... ]
  },
  ...
}

Splited Feature Data

  • Location: data/splited/
  • Filename format: <participant>.json
Sample Data
{
  "train": {
    "<label>": [
      {
        "ppg45": [
          [ ... ],
          ...
        ],
        "svri": [ ... ]
      },
      ...
    ],
    ...
  },
  "test": { ... }
}

Sensors and Features

Sensor Feature Dimension
PPG finger clip PPG-45 (39 time-domain, 9 frequency-domain) 45
Stress-induced vascular response index (sVRI) 1

PPG-45 Feature Definition

# Feature Description
1 x Systolic peak
2 y Diastolic peak
3 z Dicrotic notch
4 tpi Pulse interval
5 y/x Augmentation index
6 (x-y)/x Relative augmentation index
7 z/x
8 (y-z)/x
9 t1 Systolic peak time
10 t2 Diastolic peak time
11 t3 Dicrotic notch time
12 ∆T Time between systolic and diastolic peaks
13 w Full width at half systolic peak
14 A2/A1 Inflection point area ratio
15 t1/x Systolic peak rising slope
16 y/(tpi-t3) Diastolic peak falling slope
17 t1/tpi
18 t2/tpi
19 t3/tpi
20 ∆T/tpi
21 ta1
22 tb1
23 te1
24 tf1
25 b2/a2
26 e2/a2
27 (b2+e2)/a2
28 ta2
29 tb2
30 ta1/tpi
31 tb1/tpi
32 te1/tpi
33 tf1/tpi
34 ta2/tpi
35 tb2/tpi
36 (ta1+ta2)/tpi
37 (tb1+tb2)/tpi
38 (te1+t2)/tpi
39 (tf1+t3)/tpi
40 fbase Fundamental component frequency
41 |sbase| Fundamental component magnitude
42 f2 2nd harmonic frequency
43 |s2| 2nd harmonic magnitude
44 f3 3rd harmonic frequency
45 |s3| 3rd harmonic magnitude

API Reference

Module: ppg

Excerpt from ppg/__init__.py:

BASE_DIR = os.path.abspath(os.path.dirname(os.path.dirname(__file__)))

Module: ppg.params

Excerpt from ppg/params.py:

MINIMUM_PULSE_CYCLE = 0.5
MAXIMUM_PULSE_CYCLE = 1.2

PPG_SAMPLE_RATE = 200
PPG_FIR_FILTER_TAP_NUM = 200
PPG_FILTER_CUTOFF = [0.5, 5.0]
PPG_SYSTOLIC_PEAK_DETECTION_THRESHOLD_COEFFICIENT = 0.5

TRAINING_DATA_RATIO = 0.75

Module: ppg.signal

Peak Finding
extrema = find_extrema(signal)
PPG Signal Smoothing
smoothed_ppg_signal = smooth_ppg_signal(
    signal,
    sample_rate=PPG_SAMPLE_RATE,
    numtaps=PPG_FIR_FILTER_TAP_NUM,
    cutoff=PPG_FILTER_CUTOFF
)
PPG Single-Waveform Validation
result = validate_ppg_single_waveform(single_waveform, sample_rate=PPG_SAMPLE_RATE)
PPG Single-Waveform Extraction
single_waveforms = extract_ppg_single_waveform(signal, sample_rate=PPG_SAMPLE_RATE)

Module: ppg.feature

PPG Features

PPG-45
extract_ppg45(single_waveform, sample_rate=PPG_SAMPLE_RATE)
Stress-Induced Vascular Response Index (sVRI)
svri = extract_svri(single_waveform)

Module: ppg.learn

Split Data Set
train_data, test_data = split_data_set(data, ratio)
Get Feature Set
train_features, train_labels, test_features, test_labels = get_feature_set(data, label_set, feature_type_set)

Classifiers

Logistic Regression Classifier
classifier = logistic_regression_classifier(features, labels)
Support Vector Classifier
classifier = support_vector_classifier(features, labels)
Gaussian Naïve Bayes Classifier
classifier = gaussian_naive_bayes_classifier(features, labels)
Decision Tree Classifier
classifier = decision_tree_classifier(features, labels)
Random Forest Classifier
classifier = random_forest_classifier(features, labels)
AdaBoost Classifier
classifier = adaboost_classifier(features, labels)
Gradient Boosting Classifier
classifier = gradient_boosting_classifier(features, labels)
Voting Classifier
classifier = voting_classifier(estimators, features, labels)

Module: ppg.utils

make_dirs_for_file(pathname)
boolean = exist_file(pathname, overwrite=False, display_info=True)
text_data = load_text(pathname, display_info=True)
json_data = load_json(pathname, display_info=True)
dump_json(data, pathname, overwrite=False, display_info=True)
classifier_object = load_model(pathname, display_info=True)
dump_model(model, pathname, overwrite=False, display_info=True)
export_csv(data, fieldnames, pathname, overwrite=False, display_info=True)
datetime = parse_iso_time_string(timestamp)
set_matplotlib_backend(backend=None)
plot(args, backend=None)
semilogy(args, backend=None)

File Structure

├── data/
│   ├── raw/
│   │   ├── <participant>-<session_id>-<block_id>-<task_level>.json
│   │   └── ...
│   ├── segmented/
│   │   ├── <participant>.json
│   │   └── ...
│   ├── preprocessed/
│   │   ├── <participant>.json
│   │   └── ...
│   └── extracted/
│       ├── <participant>.json
│       └── ...
├── models/
│   └── ...
├── results/
│   └── ...
├── ppg/
│   ├── __init__.py
│   ├── params.py
│   ├── signal.py
│   ├── feature.py
│   ├── learn.py
│   └── utils.py
├── scripts/
│   ├── process_data.sh
│   └── classify.sh
├── segment.py
├── preprocess.py
├── extract.py
├── split.py
├── classify.py
├── requirements.txt
├── README.md
├── LICENSE
└── .gitignore

License

MIT License

About

Photoplethysmogram-based Real-Time Cognitive Load Assessment Using Multi-Feature Fusion Model

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published