-
Notifications
You must be signed in to change notification settings - Fork 4.1k
/
Copy pathblock_queue.h
212 lines (184 loc) · 4.21 KB
/
block_queue.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
/*************************************************************
*循环数组实现的阻塞队列,m_back = (m_back + 1) % m_max_size;
*线程安全,每个操作前都要先加互斥锁,操作完后,再解锁
**************************************************************/
#ifndef BLOCK_QUEUE_H
#define BLOCK_QUEUE_H
#include <iostream>
#include <stdlib.h>
#include <pthread.h>
#include <sys/time.h>
#include "../lock/locker.h"
using namespace std;
template <class T>
class block_queue
{
public:
block_queue(int max_size = 1000)
{
if (max_size <= 0)
{
exit(-1);
}
m_max_size = max_size;
m_array = new T[max_size];
m_size = 0;
m_front = -1;
m_back = -1;
}
void clear()
{
m_mutex.lock();
m_size = 0;
m_front = -1;
m_back = -1;
m_mutex.unlock();
}
~block_queue()
{
m_mutex.lock();
if (m_array != NULL)
delete [] m_array;
m_mutex.unlock();
}
//判断队列是否满了
bool full()
{
m_mutex.lock();
if (m_size >= m_max_size)
{
m_mutex.unlock();
return true;
}
m_mutex.unlock();
return false;
}
//判断队列是否为空
bool empty()
{
m_mutex.lock();
if (0 == m_size)
{
m_mutex.unlock();
return true;
}
m_mutex.unlock();
return false;
}
//返回队首元素
bool front(T &value)
{
m_mutex.lock();
if (0 == m_size)
{
m_mutex.unlock();
return false;
}
value = m_array[m_front];
m_mutex.unlock();
return true;
}
//返回队尾元素
bool back(T &value)
{
m_mutex.lock();
if (0 == m_size)
{
m_mutex.unlock();
return false;
}
value = m_array[m_back];
m_mutex.unlock();
return true;
}
int size()
{
int tmp = 0;
m_mutex.lock();
tmp = m_size;
m_mutex.unlock();
return tmp;
}
int max_size()
{
int tmp = 0;
m_mutex.lock();
tmp = m_max_size;
m_mutex.unlock();
return tmp;
}
//往队列添加元素,需要将所有使用队列的线程先唤醒
//当有元素push进队列,相当于生产者生产了一个元素
//若当前没有线程等待条件变量,则唤醒无意义
bool push(const T &item)
{
m_mutex.lock();
if (m_size >= m_max_size)
{
m_cond.broadcast();
m_mutex.unlock();
return false;
}
m_back = (m_back + 1) % m_max_size;
m_array[m_back] = item;
m_size++;
m_cond.broadcast();
m_mutex.unlock();
return true;
}
//pop时,如果当前队列没有元素,将会等待条件变量
bool pop(T &item)
{
m_mutex.lock();
while (m_size <= 0)
{
if (!m_cond.wait(m_mutex.get()))
{
m_mutex.unlock();
return false;
}
}
m_front = (m_front + 1) % m_max_size;
item = m_array[m_front];
m_size--;
m_mutex.unlock();
return true;
}
//增加了超时处理
bool pop(T &item, int ms_timeout)
{
struct timespec t = {0, 0};
struct timeval now = {0, 0};
gettimeofday(&now, NULL);
m_mutex.lock();
if (m_size <= 0)
{
t.tv_sec = now.tv_sec + ms_timeout / 1000;
t.tv_nsec = (ms_timeout % 1000) * 1000;
if (!m_cond.timewait(m_mutex.get(), t))
{
m_mutex.unlock();
return false;
}
}
if (m_size <= 0)
{
m_mutex.unlock();
return false;
}
m_front = (m_front + 1) % m_max_size;
item = m_array[m_front];
m_size--;
m_mutex.unlock();
return true;
}
private:
locker m_mutex;
cond m_cond;
T *m_array;
int m_size;
int m_max_size;
int m_front;
int m_back;
};
#endif