-
Notifications
You must be signed in to change notification settings - Fork 114
/
Copy pathp3d_model.py
381 lines (314 loc) · 13.2 KB
/
p3d_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
from __future__ import print_function
import torch
import torch.nn as nn
import numpy as np
import torch.nn.functional as F
from torch.autograd import Variable
import math
from functools import partial
__all__ = ['P3D', 'P3D63', 'P3D131','P3D199']
def conv_S(in_planes,out_planes,stride=1,padding=1):
# as is descriped, conv S is 1x3x3
return nn.Conv3d(in_planes,out_planes,kernel_size=(1,3,3),stride=1,
padding=padding,bias=False)
def conv_T(in_planes,out_planes,stride=1,padding=1):
# conv T is 3x1x1
return nn.Conv3d(in_planes,out_planes,kernel_size=(3,1,1),stride=1,
padding=padding,bias=False)
def downsample_basic_block(x, planes, stride):
out = F.avg_pool3d(x, kernel_size=1, stride=stride)
zero_pads = torch.Tensor(out.size(0), planes - out.size(1),
out.size(2), out.size(3),
out.size(4)).zero_()
if isinstance(out.data, torch.cuda.FloatTensor):
zero_pads = zero_pads.cuda()
out = Variable(torch.cat([out.data, zero_pads], dim=1))
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None,n_s=0,depth_3d=47,ST_struc=('A','B','C')):
super(Bottleneck, self).__init__()
self.downsample = downsample
self.depth_3d=depth_3d
self.ST_struc=ST_struc
self.len_ST=len(self.ST_struc)
stride_p=stride
if not self.downsample ==None:
stride_p=(1,2,2)
if n_s<self.depth_3d:
if n_s==0:
stride_p=1
self.conv1 = nn.Conv3d(inplanes, planes, kernel_size=1, bias=False,stride=stride_p)
self.bn1 = nn.BatchNorm3d(planes)
else:
if n_s==self.depth_3d:
stride_p=2
else:
stride_p=1
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False,stride=stride_p)
self.bn1 = nn.BatchNorm2d(planes)
# self.conv2 = nn.Conv3d(planes, planes, kernel_size=3, stride=stride,
# padding=1, bias=False)
self.id=n_s
self.ST=list(self.ST_struc)[self.id%self.len_ST]
if self.id<self.depth_3d:
self.conv2 = conv_S(planes,planes, stride=1,padding=(0,1,1))
self.bn2 = nn.BatchNorm3d(planes)
#
self.conv3 = conv_T(planes,planes, stride=1,padding=(1,0,0))
self.bn3 = nn.BatchNorm3d(planes)
else:
self.conv_normal = nn.Conv2d(planes, planes, kernel_size=3, stride=1,padding=1,bias=False)
self.bn_normal = nn.BatchNorm2d(planes)
if n_s<self.depth_3d:
self.conv4 = nn.Conv3d(planes, planes * 4, kernel_size=1, bias=False)
self.bn4 = nn.BatchNorm3d(planes * 4)
else:
self.conv4 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn4 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.stride = stride
def ST_A(self,x):
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
x = self.conv3(x)
x = self.bn3(x)
x = self.relu(x)
return x
def ST_B(self,x):
tmp_x = self.conv2(x)
tmp_x = self.bn2(tmp_x)
tmp_x = self.relu(tmp_x)
x = self.conv3(x)
x = self.bn3(x)
x = self.relu(x)
return x+tmp_x
def ST_C(self,x):
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
tmp_x = self.conv3(x)
tmp_x = self.bn3(tmp_x)
tmp_x = self.relu(tmp_x)
return x+tmp_x
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
# out = self.conv2(out)
# out = self.bn2(out)
# out = self.relu(out)
if self.id<self.depth_3d: # C3D parts:
if self.ST=='A':
out=self.ST_A(out)
elif self.ST=='B':
out=self.ST_B(out)
elif self.ST=='C':
out=self.ST_C(out)
else:
out = self.conv_normal(out) # normal is res5 part, C2D all.
out = self.bn_normal(out)
out = self.relu(out)
out = self.conv4(out)
out = self.bn4(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class P3D(nn.Module):
def __init__(self, block, layers, modality='RGB',
shortcut_type='B', num_classes=400,dropout=0.5,ST_struc=('A','B','C')):
self.inplanes = 64
super(P3D, self).__init__()
# self.conv1 = nn.Conv3d(3, 64, kernel_size=7, stride=(1, 2, 2),
# padding=(3, 3, 3), bias=False)
self.input_channel = 3 if modality=='RGB' else 2 # 2 is for flow
self.ST_struc=ST_struc
self.conv1_custom = nn.Conv3d(self.input_channel, 64, kernel_size=(1,7,7), stride=(1,2,2),
padding=(0,3,3), bias=False)
self.depth_3d=sum(layers[:3])# C3D layers are only (res2,res3,res4), res5 is C2D
self.bn1 = nn.BatchNorm3d(64) # bn1 is followed by conv1
self.cnt=0
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool3d(kernel_size=(2, 3, 3), stride=2, padding=(0,1,1)) # pooling layer for conv1.
self.maxpool_2 = nn.MaxPool3d(kernel_size=(2,1,1),padding=0,stride=(2,1,1)) # pooling layer for res2, 3, 4.
self.layer1 = self._make_layer(block, 64, layers[0], shortcut_type)
self.layer2 = self._make_layer(block, 128, layers[1], shortcut_type, stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], shortcut_type, stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], shortcut_type, stride=2)
self.avgpool = nn.AvgPool2d(kernel_size=(5, 5), stride=1) # pooling layer for res5.
self.dropout=nn.Dropout(p=dropout)
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv3d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm3d):
m.weight.data.fill_(1)
m.bias.data.zero_()
# some private attribute
self.input_size=(self.input_channel,16,160,160) # input of the network
self.input_mean = [0.485, 0.456, 0.406] if modality=='RGB' else [0.5]
self.input_std = [0.229, 0.224, 0.225] if modality=='RGB' else [np.mean([0.229, 0.224, 0.225])]
@property
def scale_size(self):
return self.input_size[2] * 256 // 160 # asume that raw images are resized (340,256).
@property
def temporal_length(self):
return self.input_size[1]
@property
def crop_size(self):
return self.input_size[2]
def _make_layer(self, block, planes, blocks, shortcut_type, stride=1):
downsample = None
stride_p=stride #especially for downsample branch.
if self.cnt<self.depth_3d:
if self.cnt==0:
stride_p=1
else:
stride_p=(1,2,2)
if stride != 1 or self.inplanes != planes * block.expansion:
if shortcut_type == 'A':
downsample = partial(downsample_basic_block,
planes=planes * block.expansion,
stride=stride)
else:
downsample = nn.Sequential(
nn.Conv3d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride_p, bias=False),
nn.BatchNorm3d(planes * block.expansion)
)
else:
if stride != 1 or self.inplanes != planes * block.expansion:
if shortcut_type == 'A':
downsample = partial(downsample_basic_block,
planes=planes * block.expansion,
stride=stride)
else:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=2, bias=False),
nn.BatchNorm2d(planes * block.expansion)
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample,n_s=self.cnt,depth_3d=self.depth_3d,ST_struc=self.ST_struc))
self.cnt+=1
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes,n_s=self.cnt,depth_3d=self.depth_3d,ST_struc=self.ST_struc))
self.cnt+=1
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1_custom(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.maxpool_2(self.layer1(x)) # Part Res2
x = self.maxpool_2(self.layer2(x)) # Part Res3
x = self.maxpool_2(self.layer3(x)) # Part Res4
sizes=x.size()
x = x.view(-1,sizes[1],sizes[3],sizes[4]) # Part Res5
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(-1,self.fc.in_features)
x = self.fc(self.dropout(x))
return x
def P3D63(**kwargs):
"""Construct a P3D63 modelbased on a ResNet-50-3D model.
"""
model = P3D(Bottleneck, [3, 4, 6, 3], **kwargs)
return model
def P3D131(**kwargs):
"""Construct a P3D131 model based on a ResNet-101-3D model.
"""
model = P3D(Bottleneck, [3, 4, 23, 3], **kwargs)
return model
def P3D199(pretrained=False,modality='RGB',**kwargs):
"""construct a P3D199 model based on a ResNet-152-3D model.
"""
model = P3D(Bottleneck, [3, 8, 36, 3], modality=modality,**kwargs)
if pretrained==True:
if modality=='RGB':
pretrained_file='p3d_rgb_199.checkpoint.pth.tar'
elif modality=='Flow':
pretrained_file='p3d_flow_199.checkpoint.pth.tar'
weights=torch.load(pretrained_file)['state_dict']
model.load_state_dict(weights)
return model
# custom operation
def get_optim_policies(model=None,modality='RGB',enable_pbn=True):
'''
first conv: weight --> conv weight
bias --> conv bias
normal action: weight --> non-first conv + fc weight
bias --> non-first conv + fc bias
bn: the first bn2, and many all bn3.
'''
first_conv_weight = []
first_conv_bias = []
normal_weight = []
normal_bias = []
bn = []
if model==None:
log.l.info('no model!')
exit()
conv_cnt = 0
bn_cnt = 0
for m in model.modules():
if isinstance(m, torch.nn.Conv3d) or isinstance(m, torch.nn.Conv2d):
ps = list(m.parameters())
conv_cnt += 1
if conv_cnt == 1:
first_conv_weight.append(ps[0])
if len(ps) == 2:
first_conv_bias.append(ps[1])
else:
normal_weight.append(ps[0])
if len(ps) == 2:
normal_bias.append(ps[1])
elif isinstance(m, torch.nn.Linear):
ps = list(m.parameters())
normal_weight.append(ps[0])
if len(ps) == 2:
normal_bias.append(ps[1])
elif isinstance(m, torch.nn.BatchNorm3d):
bn_cnt += 1
# later BN's are frozen
if not enable_pbn or bn_cnt == 1:
bn.extend(list(m.parameters()))
elif isinstance(m,torch.nn.BatchNorm2d):
bn.extend(list(m.parameters()))
elif len(m._modules) == 0:
if len(list(m.parameters())) > 0:
raise ValueError("New atomic module type: {}. Need to give it a learning policy".format(type(m)))
slow_rate=0.7
n_fore=int(len(normal_weight)*slow_rate)
slow_feat=normal_weight[:n_fore] # finetune slowly.
slow_bias=normal_bias[:n_fore]
normal_feat=normal_weight[n_fore:]
normal_bias=normal_bias[n_fore:]
return [
{'params': first_conv_weight, 'lr_mult': 5 if modality == 'Flow' else 1, 'decay_mult': 1,
'name': "first_conv_weight"},
{'params': first_conv_bias, 'lr_mult': 10 if modality == 'Flow' else 2, 'decay_mult': 0,
'name': "first_conv_bias"},
{'params': slow_feat, 'lr_mult': 1, 'decay_mult': 1,
'name': "slow_feat"},
{'params': slow_bias, 'lr_mult': 2, 'decay_mult': 0,
'name': "slow_bias"},
{'params': normal_feat, 'lr_mult': 1 , 'decay_mult': 1,
'name': "normal_feat"},
{'params': normal_bias, 'lr_mult': 2, 'decay_mult':0,
'name': "normal_bias"},
{'params': bn, 'lr_mult': 1, 'decay_mult': 0,
'name': "BN scale/shift"},
]
if __name__ == '__main__':
model = P3D199(pretrained=True,num_classes=400)
model = model.cuda()
data=torch.autograd.Variable(torch.rand(10,3,16,160,160)).cuda() # if modality=='Flow', please change the 2nd dimension 3==>2
out=model(data)
print (out.size(),out)