Output Example 1
- Query: Please recommend an industrial public works program that can be supported until 2018.
{
"sql_where_clause": "end_date >= '2018-01-01'",
"explanation": "Filtering for programs that were available for support until at least the year 2018."
}Output Example 2
- Query: Youth Support Programs Available in 2022.
{
"sql_where_clause": "target_audience = 'youth' AND start_date <= '2022-12-31' AND end_date >= '2022-01-01'",
"explanation": "The filter condition searches for programs targeted at 'youth' that were available at any time during the year 2022."
}Output Example 1
- Query: ...
...docker build -t sql_extraction_test .
docker run -it --gpus all --name sql_extraction_test_env --shm-size=64G -p {port}:{port} -e GRANT_SUDO=yes --user root -v {root_folder}:/workspace/sql_extraction_test -w /workspace/sql_extraction_test sql_extraction_test bash
docker exec -it sql_extraction_test_env bash
- When using the GPT API, enter the API KEY (token) in the '.env' file created after executing the initialization command
python sql_extraction.py --config_path config/llm_config.yaml --user_query "{user_query}" --llm gpt_api
python sql_extraction.py --config_path config/llm_config.yaml --user_query "{user_query}" --llm gpt_oss_20b