-
Notifications
You must be signed in to change notification settings - Fork 7k
/
Copy pathautoaugment.py
615 lines (555 loc) · 27.6 KB
/
autoaugment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
import math
from enum import Enum
from typing import Dict, List, Optional, Tuple
import torch
from torch import Tensor
from . import functional as F, InterpolationMode
__all__ = ["AutoAugmentPolicy", "AutoAugment", "RandAugment", "TrivialAugmentWide", "AugMix"]
def _apply_op(
img: Tensor, op_name: str, magnitude: float, interpolation: InterpolationMode, fill: Optional[List[float]]
):
if op_name == "ShearX":
# magnitude should be arctan(magnitude)
# official autoaug: (1, level, 0, 0, 1, 0)
# https://github.com/tensorflow/models/blob/dd02069717128186b88afa8d857ce57d17957f03/research/autoaugment/augmentation_transforms.py#L290
# compared to
# torchvision: (1, tan(level), 0, 0, 1, 0)
# https://github.com/pytorch/vision/blob/0c2373d0bba3499e95776e7936e207d8a1676e65/torchvision/transforms/functional.py#L976
img = F.affine(
img,
angle=0.0,
translate=[0, 0],
scale=1.0,
shear=[math.degrees(math.atan(magnitude)), 0.0],
interpolation=interpolation,
fill=fill,
center=[0, 0],
)
elif op_name == "ShearY":
# magnitude should be arctan(magnitude)
# See above
img = F.affine(
img,
angle=0.0,
translate=[0, 0],
scale=1.0,
shear=[0.0, math.degrees(math.atan(magnitude))],
interpolation=interpolation,
fill=fill,
center=[0, 0],
)
elif op_name == "TranslateX":
img = F.affine(
img,
angle=0.0,
translate=[int(magnitude), 0],
scale=1.0,
interpolation=interpolation,
shear=[0.0, 0.0],
fill=fill,
)
elif op_name == "TranslateY":
img = F.affine(
img,
angle=0.0,
translate=[0, int(magnitude)],
scale=1.0,
interpolation=interpolation,
shear=[0.0, 0.0],
fill=fill,
)
elif op_name == "Rotate":
img = F.rotate(img, magnitude, interpolation=interpolation, fill=fill)
elif op_name == "Brightness":
img = F.adjust_brightness(img, 1.0 + magnitude)
elif op_name == "Color":
img = F.adjust_saturation(img, 1.0 + magnitude)
elif op_name == "Contrast":
img = F.adjust_contrast(img, 1.0 + magnitude)
elif op_name == "Sharpness":
img = F.adjust_sharpness(img, 1.0 + magnitude)
elif op_name == "Posterize":
img = F.posterize(img, int(magnitude))
elif op_name == "Solarize":
img = F.solarize(img, magnitude)
elif op_name == "AutoContrast":
img = F.autocontrast(img)
elif op_name == "Equalize":
img = F.equalize(img)
elif op_name == "Invert":
img = F.invert(img)
elif op_name == "Identity":
pass
else:
raise ValueError(f"The provided operator {op_name} is not recognized.")
return img
class AutoAugmentPolicy(Enum):
"""AutoAugment policies learned on different datasets.
Available policies are IMAGENET, CIFAR10 and SVHN.
"""
IMAGENET = "imagenet"
CIFAR10 = "cifar10"
SVHN = "svhn"
# FIXME: Eliminate copy-pasted code for fill standardization and _augmentation_space() by moving stuff on a base class
class AutoAugment(torch.nn.Module):
r"""AutoAugment data augmentation method based on
`"AutoAugment: Learning Augmentation Strategies from Data" <https://arxiv.org/pdf/1805.09501.pdf>`_.
If the image is torch Tensor, it should be of type torch.uint8, and it is expected
to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
If img is PIL Image, it is expected to be in mode "L" or "RGB".
Args:
policy (AutoAugmentPolicy): Desired policy enum defined by
:class:`torchvision.transforms.autoaugment.AutoAugmentPolicy`. Default is ``AutoAugmentPolicy.IMAGENET``.
interpolation (InterpolationMode): Desired interpolation enum defined by
:class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
fill (sequence or number, optional): Pixel fill value for the area outside the transformed
image. If given a number, the value is used for all bands respectively.
"""
def __init__(
self,
policy: AutoAugmentPolicy = AutoAugmentPolicy.IMAGENET,
interpolation: InterpolationMode = InterpolationMode.NEAREST,
fill: Optional[List[float]] = None,
) -> None:
super().__init__()
self.policy = policy
self.interpolation = interpolation
self.fill = fill
self.policies = self._get_policies(policy)
def _get_policies(
self, policy: AutoAugmentPolicy
) -> List[Tuple[Tuple[str, float, Optional[int]], Tuple[str, float, Optional[int]]]]:
if policy == AutoAugmentPolicy.IMAGENET:
return [
(("Posterize", 0.4, 8), ("Rotate", 0.6, 9)),
(("Solarize", 0.6, 5), ("AutoContrast", 0.6, None)),
(("Equalize", 0.8, None), ("Equalize", 0.6, None)),
(("Posterize", 0.6, 7), ("Posterize", 0.6, 6)),
(("Equalize", 0.4, None), ("Solarize", 0.2, 4)),
(("Equalize", 0.4, None), ("Rotate", 0.8, 8)),
(("Solarize", 0.6, 3), ("Equalize", 0.6, None)),
(("Posterize", 0.8, 5), ("Equalize", 1.0, None)),
(("Rotate", 0.2, 3), ("Solarize", 0.6, 8)),
(("Equalize", 0.6, None), ("Posterize", 0.4, 6)),
(("Rotate", 0.8, 8), ("Color", 0.4, 0)),
(("Rotate", 0.4, 9), ("Equalize", 0.6, None)),
(("Equalize", 0.0, None), ("Equalize", 0.8, None)),
(("Invert", 0.6, None), ("Equalize", 1.0, None)),
(("Color", 0.6, 4), ("Contrast", 1.0, 8)),
(("Rotate", 0.8, 8), ("Color", 1.0, 2)),
(("Color", 0.8, 8), ("Solarize", 0.8, 7)),
(("Sharpness", 0.4, 7), ("Invert", 0.6, None)),
(("ShearX", 0.6, 5), ("Equalize", 1.0, None)),
(("Color", 0.4, 0), ("Equalize", 0.6, None)),
(("Equalize", 0.4, None), ("Solarize", 0.2, 4)),
(("Solarize", 0.6, 5), ("AutoContrast", 0.6, None)),
(("Invert", 0.6, None), ("Equalize", 1.0, None)),
(("Color", 0.6, 4), ("Contrast", 1.0, 8)),
(("Equalize", 0.8, None), ("Equalize", 0.6, None)),
]
elif policy == AutoAugmentPolicy.CIFAR10:
return [
(("Invert", 0.1, None), ("Contrast", 0.2, 6)),
(("Rotate", 0.7, 2), ("TranslateX", 0.3, 9)),
(("Sharpness", 0.8, 1), ("Sharpness", 0.9, 3)),
(("ShearY", 0.5, 8), ("TranslateY", 0.7, 9)),
(("AutoContrast", 0.5, None), ("Equalize", 0.9, None)),
(("ShearY", 0.2, 7), ("Posterize", 0.3, 7)),
(("Color", 0.4, 3), ("Brightness", 0.6, 7)),
(("Sharpness", 0.3, 9), ("Brightness", 0.7, 9)),
(("Equalize", 0.6, None), ("Equalize", 0.5, None)),
(("Contrast", 0.6, 7), ("Sharpness", 0.6, 5)),
(("Color", 0.7, 7), ("TranslateX", 0.5, 8)),
(("Equalize", 0.3, None), ("AutoContrast", 0.4, None)),
(("TranslateY", 0.4, 3), ("Sharpness", 0.2, 6)),
(("Brightness", 0.9, 6), ("Color", 0.2, 8)),
(("Solarize", 0.5, 2), ("Invert", 0.0, None)),
(("Equalize", 0.2, None), ("AutoContrast", 0.6, None)),
(("Equalize", 0.2, None), ("Equalize", 0.6, None)),
(("Color", 0.9, 9), ("Equalize", 0.6, None)),
(("AutoContrast", 0.8, None), ("Solarize", 0.2, 8)),
(("Brightness", 0.1, 3), ("Color", 0.7, 0)),
(("Solarize", 0.4, 5), ("AutoContrast", 0.9, None)),
(("TranslateY", 0.9, 9), ("TranslateY", 0.7, 9)),
(("AutoContrast", 0.9, None), ("Solarize", 0.8, 3)),
(("Equalize", 0.8, None), ("Invert", 0.1, None)),
(("TranslateY", 0.7, 9), ("AutoContrast", 0.9, None)),
]
elif policy == AutoAugmentPolicy.SVHN:
return [
(("ShearX", 0.9, 4), ("Invert", 0.2, None)),
(("ShearY", 0.9, 8), ("Invert", 0.7, None)),
(("Equalize", 0.6, None), ("Solarize", 0.6, 6)),
(("Invert", 0.9, None), ("Equalize", 0.6, None)),
(("Equalize", 0.6, None), ("Rotate", 0.9, 3)),
(("ShearX", 0.9, 4), ("AutoContrast", 0.8, None)),
(("ShearY", 0.9, 8), ("Invert", 0.4, None)),
(("ShearY", 0.9, 5), ("Solarize", 0.2, 6)),
(("Invert", 0.9, None), ("AutoContrast", 0.8, None)),
(("Equalize", 0.6, None), ("Rotate", 0.9, 3)),
(("ShearX", 0.9, 4), ("Solarize", 0.3, 3)),
(("ShearY", 0.8, 8), ("Invert", 0.7, None)),
(("Equalize", 0.9, None), ("TranslateY", 0.6, 6)),
(("Invert", 0.9, None), ("Equalize", 0.6, None)),
(("Contrast", 0.3, 3), ("Rotate", 0.8, 4)),
(("Invert", 0.8, None), ("TranslateY", 0.0, 2)),
(("ShearY", 0.7, 6), ("Solarize", 0.4, 8)),
(("Invert", 0.6, None), ("Rotate", 0.8, 4)),
(("ShearY", 0.3, 7), ("TranslateX", 0.9, 3)),
(("ShearX", 0.1, 6), ("Invert", 0.6, None)),
(("Solarize", 0.7, 2), ("TranslateY", 0.6, 7)),
(("ShearY", 0.8, 4), ("Invert", 0.8, None)),
(("ShearX", 0.7, 9), ("TranslateY", 0.8, 3)),
(("ShearY", 0.8, 5), ("AutoContrast", 0.7, None)),
(("ShearX", 0.7, 2), ("Invert", 0.1, None)),
]
else:
raise ValueError(f"The provided policy {policy} is not recognized.")
def _augmentation_space(self, num_bins: int, image_size: Tuple[int, int]) -> Dict[str, Tuple[Tensor, bool]]:
return {
# op_name: (magnitudes, signed)
"ShearX": (torch.linspace(0.0, 0.3, num_bins), True),
"ShearY": (torch.linspace(0.0, 0.3, num_bins), True),
"TranslateX": (torch.linspace(0.0, 150.0 / 331.0 * image_size[1], num_bins), True),
"TranslateY": (torch.linspace(0.0, 150.0 / 331.0 * image_size[0], num_bins), True),
"Rotate": (torch.linspace(0.0, 30.0, num_bins), True),
"Brightness": (torch.linspace(0.0, 0.9, num_bins), True),
"Color": (torch.linspace(0.0, 0.9, num_bins), True),
"Contrast": (torch.linspace(0.0, 0.9, num_bins), True),
"Sharpness": (torch.linspace(0.0, 0.9, num_bins), True),
"Posterize": (8 - (torch.arange(num_bins) / ((num_bins - 1) / 4)).round().int(), False),
"Solarize": (torch.linspace(255.0, 0.0, num_bins), False),
"AutoContrast": (torch.tensor(0.0), False),
"Equalize": (torch.tensor(0.0), False),
"Invert": (torch.tensor(0.0), False),
}
@staticmethod
def get_params(transform_num: int) -> Tuple[int, Tensor, Tensor]:
"""Get parameters for autoaugment transformation
Returns:
params required by the autoaugment transformation
"""
policy_id = int(torch.randint(transform_num, (1,)).item())
probs = torch.rand((2,))
signs = torch.randint(2, (2,))
return policy_id, probs, signs
def forward(self, img: Tensor) -> Tensor:
"""
img (PIL Image or Tensor): Image to be transformed.
Returns:
PIL Image or Tensor: AutoAugmented image.
"""
fill = self.fill
channels, height, width = F.get_dimensions(img)
if isinstance(img, Tensor):
if isinstance(fill, (int, float)):
fill = [float(fill)] * channels
elif fill is not None:
fill = [float(f) for f in fill]
transform_id, probs, signs = self.get_params(len(self.policies))
op_meta = self._augmentation_space(10, (height, width))
for i, (op_name, p, magnitude_id) in enumerate(self.policies[transform_id]):
if probs[i] <= p:
magnitudes, signed = op_meta[op_name]
magnitude = float(magnitudes[magnitude_id].item()) if magnitude_id is not None else 0.0
if signed and signs[i] == 0:
magnitude *= -1.0
img = _apply_op(img, op_name, magnitude, interpolation=self.interpolation, fill=fill)
return img
def __repr__(self) -> str:
return f"{self.__class__.__name__}(policy={self.policy}, fill={self.fill})"
class RandAugment(torch.nn.Module):
r"""RandAugment data augmentation method based on
`"RandAugment: Practical automated data augmentation with a reduced search space"
<https://arxiv.org/abs/1909.13719>`_.
If the image is torch Tensor, it should be of type torch.uint8, and it is expected
to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
If img is PIL Image, it is expected to be in mode "L" or "RGB".
Args:
num_ops (int): Number of augmentation transformations to apply sequentially.
magnitude (int): Magnitude for all the transformations.
num_magnitude_bins (int): The number of different magnitude values.
interpolation (InterpolationMode): Desired interpolation enum defined by
:class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
fill (sequence or number, optional): Pixel fill value for the area outside the transformed
image. If given a number, the value is used for all bands respectively.
"""
def __init__(
self,
num_ops: int = 2,
magnitude: int = 9,
num_magnitude_bins: int = 31,
interpolation: InterpolationMode = InterpolationMode.NEAREST,
fill: Optional[List[float]] = None,
) -> None:
super().__init__()
self.num_ops = num_ops
self.magnitude = magnitude
self.num_magnitude_bins = num_magnitude_bins
self.interpolation = interpolation
self.fill = fill
def _augmentation_space(self, num_bins: int, image_size: Tuple[int, int]) -> Dict[str, Tuple[Tensor, bool]]:
return {
# op_name: (magnitudes, signed)
"Identity": (torch.tensor(0.0), False),
"ShearX": (torch.linspace(0.0, 0.3, num_bins), True),
"ShearY": (torch.linspace(0.0, 0.3, num_bins), True),
"TranslateX": (torch.linspace(0.0, 150.0 / 331.0 * image_size[1], num_bins), True),
"TranslateY": (torch.linspace(0.0, 150.0 / 331.0 * image_size[0], num_bins), True),
"Rotate": (torch.linspace(0.0, 30.0, num_bins), True),
"Brightness": (torch.linspace(0.0, 0.9, num_bins), True),
"Color": (torch.linspace(0.0, 0.9, num_bins), True),
"Contrast": (torch.linspace(0.0, 0.9, num_bins), True),
"Sharpness": (torch.linspace(0.0, 0.9, num_bins), True),
"Posterize": (8 - (torch.arange(num_bins) / ((num_bins - 1) / 4)).round().int(), False),
"Solarize": (torch.linspace(255.0, 0.0, num_bins), False),
"AutoContrast": (torch.tensor(0.0), False),
"Equalize": (torch.tensor(0.0), False),
}
def forward(self, img: Tensor) -> Tensor:
"""
img (PIL Image or Tensor): Image to be transformed.
Returns:
PIL Image or Tensor: Transformed image.
"""
fill = self.fill
channels, height, width = F.get_dimensions(img)
if isinstance(img, Tensor):
if isinstance(fill, (int, float)):
fill = [float(fill)] * channels
elif fill is not None:
fill = [float(f) for f in fill]
op_meta = self._augmentation_space(self.num_magnitude_bins, (height, width))
for _ in range(self.num_ops):
op_index = int(torch.randint(len(op_meta), (1,)).item())
op_name = list(op_meta.keys())[op_index]
magnitudes, signed = op_meta[op_name]
magnitude = float(magnitudes[self.magnitude].item()) if magnitudes.ndim > 0 else 0.0
if signed and torch.randint(2, (1,)):
magnitude *= -1.0
img = _apply_op(img, op_name, magnitude, interpolation=self.interpolation, fill=fill)
return img
def __repr__(self) -> str:
s = (
f"{self.__class__.__name__}("
f"num_ops={self.num_ops}"
f", magnitude={self.magnitude}"
f", num_magnitude_bins={self.num_magnitude_bins}"
f", interpolation={self.interpolation}"
f", fill={self.fill}"
f")"
)
return s
class TrivialAugmentWide(torch.nn.Module):
r"""Dataset-independent data-augmentation with TrivialAugment Wide, as described in
`"TrivialAugment: Tuning-free Yet State-of-the-Art Data Augmentation" <https://arxiv.org/abs/2103.10158>`_.
If the image is torch Tensor, it should be of type torch.uint8, and it is expected
to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
If img is PIL Image, it is expected to be in mode "L" or "RGB".
Args:
num_magnitude_bins (int): The number of different magnitude values.
interpolation (InterpolationMode): Desired interpolation enum defined by
:class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
fill (sequence or number, optional): Pixel fill value for the area outside the transformed
image. If given a number, the value is used for all bands respectively.
"""
def __init__(
self,
num_magnitude_bins: int = 31,
interpolation: InterpolationMode = InterpolationMode.NEAREST,
fill: Optional[List[float]] = None,
) -> None:
super().__init__()
self.num_magnitude_bins = num_magnitude_bins
self.interpolation = interpolation
self.fill = fill
def _augmentation_space(self, num_bins: int) -> Dict[str, Tuple[Tensor, bool]]:
return {
# op_name: (magnitudes, signed)
"Identity": (torch.tensor(0.0), False),
"ShearX": (torch.linspace(0.0, 0.99, num_bins), True),
"ShearY": (torch.linspace(0.0, 0.99, num_bins), True),
"TranslateX": (torch.linspace(0.0, 32.0, num_bins), True),
"TranslateY": (torch.linspace(0.0, 32.0, num_bins), True),
"Rotate": (torch.linspace(0.0, 135.0, num_bins), True),
"Brightness": (torch.linspace(0.0, 0.99, num_bins), True),
"Color": (torch.linspace(0.0, 0.99, num_bins), True),
"Contrast": (torch.linspace(0.0, 0.99, num_bins), True),
"Sharpness": (torch.linspace(0.0, 0.99, num_bins), True),
"Posterize": (8 - (torch.arange(num_bins) / ((num_bins - 1) / 6)).round().int(), False),
"Solarize": (torch.linspace(255.0, 0.0, num_bins), False),
"AutoContrast": (torch.tensor(0.0), False),
"Equalize": (torch.tensor(0.0), False),
}
def forward(self, img: Tensor) -> Tensor:
"""
img (PIL Image or Tensor): Image to be transformed.
Returns:
PIL Image or Tensor: Transformed image.
"""
fill = self.fill
channels, height, width = F.get_dimensions(img)
if isinstance(img, Tensor):
if isinstance(fill, (int, float)):
fill = [float(fill)] * channels
elif fill is not None:
fill = [float(f) for f in fill]
op_meta = self._augmentation_space(self.num_magnitude_bins)
op_index = int(torch.randint(len(op_meta), (1,)).item())
op_name = list(op_meta.keys())[op_index]
magnitudes, signed = op_meta[op_name]
magnitude = (
float(magnitudes[torch.randint(len(magnitudes), (1,), dtype=torch.long)].item())
if magnitudes.ndim > 0
else 0.0
)
if signed and torch.randint(2, (1,)):
magnitude *= -1.0
return _apply_op(img, op_name, magnitude, interpolation=self.interpolation, fill=fill)
def __repr__(self) -> str:
s = (
f"{self.__class__.__name__}("
f"num_magnitude_bins={self.num_magnitude_bins}"
f", interpolation={self.interpolation}"
f", fill={self.fill}"
f")"
)
return s
class AugMix(torch.nn.Module):
r"""AugMix data augmentation method based on
`"AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty" <https://arxiv.org/abs/1912.02781>`_.
If the image is torch Tensor, it should be of type torch.uint8, and it is expected
to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
If img is PIL Image, it is expected to be in mode "L" or "RGB".
Args:
severity (int): The severity of base augmentation operators. Default is ``3``.
mixture_width (int): The number of augmentation chains. Default is ``3``.
chain_depth (int): The depth of augmentation chains. A negative value denotes stochastic depth sampled from the interval [1, 3].
Default is ``-1``.
alpha (float): The hyperparameter for the probability distributions. Default is ``1.0``.
all_ops (bool): Use all operations (including brightness, contrast, color and sharpness). Default is ``True``.
interpolation (InterpolationMode): Desired interpolation enum defined by
:class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
fill (sequence or number, optional): Pixel fill value for the area outside the transformed
image. If given a number, the value is used for all bands respectively.
"""
def __init__(
self,
severity: int = 3,
mixture_width: int = 3,
chain_depth: int = -1,
alpha: float = 1.0,
all_ops: bool = True,
interpolation: InterpolationMode = InterpolationMode.BILINEAR,
fill: Optional[List[float]] = None,
) -> None:
super().__init__()
self._PARAMETER_MAX = 10
if not (1 <= severity <= self._PARAMETER_MAX):
raise ValueError(f"The severity must be between [1, {self._PARAMETER_MAX}]. Got {severity} instead.")
self.severity = severity
self.mixture_width = mixture_width
self.chain_depth = chain_depth
self.alpha = alpha
self.all_ops = all_ops
self.interpolation = interpolation
self.fill = fill
def _augmentation_space(self, num_bins: int, image_size: Tuple[int, int]) -> Dict[str, Tuple[Tensor, bool]]:
s = {
# op_name: (magnitudes, signed)
"ShearX": (torch.linspace(0.0, 0.3, num_bins), True),
"ShearY": (torch.linspace(0.0, 0.3, num_bins), True),
"TranslateX": (torch.linspace(0.0, image_size[1] / 3.0, num_bins), True),
"TranslateY": (torch.linspace(0.0, image_size[0] / 3.0, num_bins), True),
"Rotate": (torch.linspace(0.0, 30.0, num_bins), True),
"Posterize": (4 - (torch.arange(num_bins) / ((num_bins - 1) / 4)).round().int(), False),
"Solarize": (torch.linspace(255.0, 0.0, num_bins), False),
"AutoContrast": (torch.tensor(0.0), False),
"Equalize": (torch.tensor(0.0), False),
}
if self.all_ops:
s.update(
{
"Brightness": (torch.linspace(0.0, 0.9, num_bins), True),
"Color": (torch.linspace(0.0, 0.9, num_bins), True),
"Contrast": (torch.linspace(0.0, 0.9, num_bins), True),
"Sharpness": (torch.linspace(0.0, 0.9, num_bins), True),
}
)
return s
@torch.jit.unused
def _pil_to_tensor(self, img) -> Tensor:
return F.pil_to_tensor(img)
@torch.jit.unused
def _tensor_to_pil(self, img: Tensor):
return F.to_pil_image(img)
def _sample_dirichlet(self, params: Tensor) -> Tensor:
# Must be on a separate method so that we can overwrite it in tests.
return torch._sample_dirichlet(params)
def forward(self, orig_img: Tensor) -> Tensor:
"""
img (PIL Image or Tensor): Image to be transformed.
Returns:
PIL Image or Tensor: Transformed image.
"""
fill = self.fill
channels, height, width = F.get_dimensions(orig_img)
if isinstance(orig_img, Tensor):
img = orig_img
if isinstance(fill, (int, float)):
fill = [float(fill)] * channels
elif fill is not None:
fill = [float(f) for f in fill]
else:
img = self._pil_to_tensor(orig_img)
op_meta = self._augmentation_space(self._PARAMETER_MAX, (height, width))
orig_dims = list(img.shape)
batch = img.view([1] * max(4 - img.ndim, 0) + orig_dims)
batch_dims = [batch.size(0)] + [1] * (batch.ndim - 1)
# Sample the beta weights for combining the original and augmented image. To get Beta, we use a Dirichlet
# with 2 parameters. The 1st column stores the weights of the original and the 2nd the ones of augmented image.
m = self._sample_dirichlet(
torch.tensor([self.alpha, self.alpha], device=batch.device).expand(batch_dims[0], -1)
)
# Sample the mixing weights and combine them with the ones sampled from Beta for the augmented images.
combined_weights = self._sample_dirichlet(
torch.tensor([self.alpha] * self.mixture_width, device=batch.device).expand(batch_dims[0], -1)
) * m[:, 1].view([batch_dims[0], -1])
mix = m[:, 0].view(batch_dims) * batch
for i in range(self.mixture_width):
aug = batch
depth = self.chain_depth if self.chain_depth > 0 else int(torch.randint(low=1, high=4, size=(1,)).item())
for _ in range(depth):
op_index = int(torch.randint(len(op_meta), (1,)).item())
op_name = list(op_meta.keys())[op_index]
magnitudes, signed = op_meta[op_name]
magnitude = (
float(magnitudes[torch.randint(self.severity, (1,), dtype=torch.long)].item())
if magnitudes.ndim > 0
else 0.0
)
if signed and torch.randint(2, (1,)):
magnitude *= -1.0
aug = _apply_op(aug, op_name, magnitude, interpolation=self.interpolation, fill=fill)
mix.add_(combined_weights[:, i].view(batch_dims) * aug)
mix = mix.view(orig_dims).to(dtype=img.dtype)
if not isinstance(orig_img, Tensor):
return self._tensor_to_pil(mix)
return mix
def __repr__(self) -> str:
s = (
f"{self.__class__.__name__}("
f"severity={self.severity}"
f", mixture_width={self.mixture_width}"
f", chain_depth={self.chain_depth}"
f", alpha={self.alpha}"
f", all_ops={self.all_ops}"
f", interpolation={self.interpolation}"
f", fill={self.fill}"
f")"
)
return s