-
Notifications
You must be signed in to change notification settings - Fork 7k
/
roi_heads.py
876 lines (717 loc) · 33 KB
/
roi_heads.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
from typing import Dict, List, Optional, Tuple
import torch
import torch.nn.functional as F
import torchvision
from torch import nn, Tensor
from torchvision.ops import boxes as box_ops, roi_align
from . import _utils as det_utils
def fastrcnn_loss(class_logits, box_regression, labels, regression_targets):
# type: (Tensor, Tensor, List[Tensor], List[Tensor]) -> Tuple[Tensor, Tensor]
"""
Computes the loss for Faster R-CNN.
Args:
class_logits (Tensor)
box_regression (Tensor)
labels (list[BoxList])
regression_targets (Tensor)
Returns:
classification_loss (Tensor)
box_loss (Tensor)
"""
labels = torch.cat(labels, dim=0)
regression_targets = torch.cat(regression_targets, dim=0)
classification_loss = F.cross_entropy(class_logits, labels)
# get indices that correspond to the regression targets for
# the corresponding ground truth labels, to be used with
# advanced indexing
sampled_pos_inds_subset = torch.where(labels > 0)[0]
labels_pos = labels[sampled_pos_inds_subset]
N, num_classes = class_logits.shape
box_regression = box_regression.reshape(N, box_regression.size(-1) // 4, 4)
box_loss = F.smooth_l1_loss(
box_regression[sampled_pos_inds_subset, labels_pos],
regression_targets[sampled_pos_inds_subset],
beta=1 / 9,
reduction="sum",
)
box_loss = box_loss / labels.numel()
return classification_loss, box_loss
def maskrcnn_inference(x, labels):
# type: (Tensor, List[Tensor]) -> List[Tensor]
"""
From the results of the CNN, post process the masks
by taking the mask corresponding to the class with max
probability (which are of fixed size and directly output
by the CNN) and return the masks in the mask field of the BoxList.
Args:
x (Tensor): the mask logits
labels (list[BoxList]): bounding boxes that are used as
reference, one for ech image
Returns:
results (list[BoxList]): one BoxList for each image, containing
the extra field mask
"""
mask_prob = x.sigmoid()
# select masks corresponding to the predicted classes
num_masks = x.shape[0]
boxes_per_image = [label.shape[0] for label in labels]
labels = torch.cat(labels)
index = torch.arange(num_masks, device=labels.device)
mask_prob = mask_prob[index, labels][:, None]
mask_prob = mask_prob.split(boxes_per_image, dim=0)
return mask_prob
def project_masks_on_boxes(gt_masks, boxes, matched_idxs, M):
# type: (Tensor, Tensor, Tensor, int) -> Tensor
"""
Given segmentation masks and the bounding boxes corresponding
to the location of the masks in the image, this function
crops and resizes the masks in the position defined by the
boxes. This prepares the masks for them to be fed to the
loss computation as the targets.
"""
matched_idxs = matched_idxs.to(boxes)
rois = torch.cat([matched_idxs[:, None], boxes], dim=1)
gt_masks = gt_masks[:, None].to(rois)
return roi_align(gt_masks, rois, (M, M), 1.0)[:, 0]
def maskrcnn_loss(mask_logits, proposals, gt_masks, gt_labels, mask_matched_idxs):
# type: (Tensor, List[Tensor], List[Tensor], List[Tensor], List[Tensor]) -> Tensor
"""
Args:
proposals (list[BoxList])
mask_logits (Tensor)
targets (list[BoxList])
Return:
mask_loss (Tensor): scalar tensor containing the loss
"""
discretization_size = mask_logits.shape[-1]
labels = [gt_label[idxs] for gt_label, idxs in zip(gt_labels, mask_matched_idxs)]
mask_targets = [
project_masks_on_boxes(m, p, i, discretization_size) for m, p, i in zip(gt_masks, proposals, mask_matched_idxs)
]
labels = torch.cat(labels, dim=0)
mask_targets = torch.cat(mask_targets, dim=0)
# torch.mean (in binary_cross_entropy_with_logits) doesn't
# accept empty tensors, so handle it separately
if mask_targets.numel() == 0:
return mask_logits.sum() * 0
mask_loss = F.binary_cross_entropy_with_logits(
mask_logits[torch.arange(labels.shape[0], device=labels.device), labels], mask_targets
)
return mask_loss
def keypoints_to_heatmap(keypoints, rois, heatmap_size):
# type: (Tensor, Tensor, int) -> Tuple[Tensor, Tensor]
offset_x = rois[:, 0]
offset_y = rois[:, 1]
scale_x = heatmap_size / (rois[:, 2] - rois[:, 0])
scale_y = heatmap_size / (rois[:, 3] - rois[:, 1])
offset_x = offset_x[:, None]
offset_y = offset_y[:, None]
scale_x = scale_x[:, None]
scale_y = scale_y[:, None]
x = keypoints[..., 0]
y = keypoints[..., 1]
x_boundary_inds = x == rois[:, 2][:, None]
y_boundary_inds = y == rois[:, 3][:, None]
x = (x - offset_x) * scale_x
x = x.floor().long()
y = (y - offset_y) * scale_y
y = y.floor().long()
x[x_boundary_inds] = heatmap_size - 1
y[y_boundary_inds] = heatmap_size - 1
valid_loc = (x >= 0) & (y >= 0) & (x < heatmap_size) & (y < heatmap_size)
vis = keypoints[..., 2] > 0
valid = (valid_loc & vis).long()
lin_ind = y * heatmap_size + x
heatmaps = lin_ind * valid
return heatmaps, valid
def _onnx_heatmaps_to_keypoints(
maps, maps_i, roi_map_width, roi_map_height, widths_i, heights_i, offset_x_i, offset_y_i
):
num_keypoints = torch.scalar_tensor(maps.size(1), dtype=torch.int64)
width_correction = widths_i / roi_map_width
height_correction = heights_i / roi_map_height
roi_map = F.interpolate(
maps_i[:, None], size=(int(roi_map_height), int(roi_map_width)), mode="bicubic", align_corners=False
)[:, 0]
w = torch.scalar_tensor(roi_map.size(2), dtype=torch.int64)
pos = roi_map.reshape(num_keypoints, -1).argmax(dim=1)
x_int = pos % w
y_int = (pos - x_int) // w
x = (torch.tensor(0.5, dtype=torch.float32) + x_int.to(dtype=torch.float32)) * width_correction.to(
dtype=torch.float32
)
y = (torch.tensor(0.5, dtype=torch.float32) + y_int.to(dtype=torch.float32)) * height_correction.to(
dtype=torch.float32
)
xy_preds_i_0 = x + offset_x_i.to(dtype=torch.float32)
xy_preds_i_1 = y + offset_y_i.to(dtype=torch.float32)
xy_preds_i_2 = torch.ones(xy_preds_i_1.shape, dtype=torch.float32)
xy_preds_i = torch.stack(
[
xy_preds_i_0.to(dtype=torch.float32),
xy_preds_i_1.to(dtype=torch.float32),
xy_preds_i_2.to(dtype=torch.float32),
],
0,
)
# TODO: simplify when indexing without rank will be supported by ONNX
base = num_keypoints * num_keypoints + num_keypoints + 1
ind = torch.arange(num_keypoints)
ind = ind.to(dtype=torch.int64) * base
end_scores_i = (
roi_map.index_select(1, y_int.to(dtype=torch.int64))
.index_select(2, x_int.to(dtype=torch.int64))
.view(-1)
.index_select(0, ind.to(dtype=torch.int64))
)
return xy_preds_i, end_scores_i
@torch.jit._script_if_tracing
def _onnx_heatmaps_to_keypoints_loop(
maps, rois, widths_ceil, heights_ceil, widths, heights, offset_x, offset_y, num_keypoints
):
xy_preds = torch.zeros((0, 3, int(num_keypoints)), dtype=torch.float32, device=maps.device)
end_scores = torch.zeros((0, int(num_keypoints)), dtype=torch.float32, device=maps.device)
for i in range(int(rois.size(0))):
xy_preds_i, end_scores_i = _onnx_heatmaps_to_keypoints(
maps, maps[i], widths_ceil[i], heights_ceil[i], widths[i], heights[i], offset_x[i], offset_y[i]
)
xy_preds = torch.cat((xy_preds.to(dtype=torch.float32), xy_preds_i.unsqueeze(0).to(dtype=torch.float32)), 0)
end_scores = torch.cat(
(end_scores.to(dtype=torch.float32), end_scores_i.to(dtype=torch.float32).unsqueeze(0)), 0
)
return xy_preds, end_scores
def heatmaps_to_keypoints(maps, rois):
"""Extract predicted keypoint locations from heatmaps. Output has shape
(#rois, 4, #keypoints) with the 4 rows corresponding to (x, y, logit, prob)
for each keypoint.
"""
# This function converts a discrete image coordinate in a HEATMAP_SIZE x
# HEATMAP_SIZE image to a continuous keypoint coordinate. We maintain
# consistency with keypoints_to_heatmap_labels by using the conversion from
# Heckbert 1990: c = d + 0.5, where d is a discrete coordinate and c is a
# continuous coordinate.
offset_x = rois[:, 0]
offset_y = rois[:, 1]
widths = rois[:, 2] - rois[:, 0]
heights = rois[:, 3] - rois[:, 1]
widths = widths.clamp(min=1)
heights = heights.clamp(min=1)
widths_ceil = widths.ceil()
heights_ceil = heights.ceil()
num_keypoints = maps.shape[1]
if torchvision._is_tracing():
xy_preds, end_scores = _onnx_heatmaps_to_keypoints_loop(
maps,
rois,
widths_ceil,
heights_ceil,
widths,
heights,
offset_x,
offset_y,
torch.scalar_tensor(num_keypoints, dtype=torch.int64),
)
return xy_preds.permute(0, 2, 1), end_scores
xy_preds = torch.zeros((len(rois), 3, num_keypoints), dtype=torch.float32, device=maps.device)
end_scores = torch.zeros((len(rois), num_keypoints), dtype=torch.float32, device=maps.device)
for i in range(len(rois)):
roi_map_width = int(widths_ceil[i].item())
roi_map_height = int(heights_ceil[i].item())
width_correction = widths[i] / roi_map_width
height_correction = heights[i] / roi_map_height
roi_map = F.interpolate(
maps[i][:, None], size=(roi_map_height, roi_map_width), mode="bicubic", align_corners=False
)[:, 0]
# roi_map_probs = scores_to_probs(roi_map.copy())
w = roi_map.shape[2]
pos = roi_map.reshape(num_keypoints, -1).argmax(dim=1)
x_int = pos % w
y_int = torch.div(pos - x_int, w, rounding_mode="floor")
# assert (roi_map_probs[k, y_int, x_int] ==
# roi_map_probs[k, :, :].max())
x = (x_int.float() + 0.5) * width_correction
y = (y_int.float() + 0.5) * height_correction
xy_preds[i, 0, :] = x + offset_x[i]
xy_preds[i, 1, :] = y + offset_y[i]
xy_preds[i, 2, :] = 1
end_scores[i, :] = roi_map[torch.arange(num_keypoints, device=roi_map.device), y_int, x_int]
return xy_preds.permute(0, 2, 1), end_scores
def keypointrcnn_loss(keypoint_logits, proposals, gt_keypoints, keypoint_matched_idxs):
# type: (Tensor, List[Tensor], List[Tensor], List[Tensor]) -> Tensor
N, K, H, W = keypoint_logits.shape
if H != W:
raise ValueError(
f"keypoint_logits height and width (last two elements of shape) should be equal. Instead got H = {H} and W = {W}"
)
discretization_size = H
heatmaps = []
valid = []
for proposals_per_image, gt_kp_in_image, midx in zip(proposals, gt_keypoints, keypoint_matched_idxs):
kp = gt_kp_in_image[midx]
heatmaps_per_image, valid_per_image = keypoints_to_heatmap(kp, proposals_per_image, discretization_size)
heatmaps.append(heatmaps_per_image.view(-1))
valid.append(valid_per_image.view(-1))
keypoint_targets = torch.cat(heatmaps, dim=0)
valid = torch.cat(valid, dim=0).to(dtype=torch.uint8)
valid = torch.where(valid)[0]
# torch.mean (in binary_cross_entropy_with_logits) does'nt
# accept empty tensors, so handle it sepaartely
if keypoint_targets.numel() == 0 or len(valid) == 0:
return keypoint_logits.sum() * 0
keypoint_logits = keypoint_logits.view(N * K, H * W)
keypoint_loss = F.cross_entropy(keypoint_logits[valid], keypoint_targets[valid])
return keypoint_loss
def keypointrcnn_inference(x, boxes):
# type: (Tensor, List[Tensor]) -> Tuple[List[Tensor], List[Tensor]]
kp_probs = []
kp_scores = []
boxes_per_image = [box.size(0) for box in boxes]
x2 = x.split(boxes_per_image, dim=0)
for xx, bb in zip(x2, boxes):
kp_prob, scores = heatmaps_to_keypoints(xx, bb)
kp_probs.append(kp_prob)
kp_scores.append(scores)
return kp_probs, kp_scores
def _onnx_expand_boxes(boxes, scale):
# type: (Tensor, float) -> Tensor
w_half = (boxes[:, 2] - boxes[:, 0]) * 0.5
h_half = (boxes[:, 3] - boxes[:, 1]) * 0.5
x_c = (boxes[:, 2] + boxes[:, 0]) * 0.5
y_c = (boxes[:, 3] + boxes[:, 1]) * 0.5
w_half = w_half.to(dtype=torch.float32) * scale
h_half = h_half.to(dtype=torch.float32) * scale
boxes_exp0 = x_c - w_half
boxes_exp1 = y_c - h_half
boxes_exp2 = x_c + w_half
boxes_exp3 = y_c + h_half
boxes_exp = torch.stack((boxes_exp0, boxes_exp1, boxes_exp2, boxes_exp3), 1)
return boxes_exp
# the next two functions should be merged inside Masker
# but are kept here for the moment while we need them
# temporarily for paste_mask_in_image
def expand_boxes(boxes, scale):
# type: (Tensor, float) -> Tensor
if torchvision._is_tracing():
return _onnx_expand_boxes(boxes, scale)
w_half = (boxes[:, 2] - boxes[:, 0]) * 0.5
h_half = (boxes[:, 3] - boxes[:, 1]) * 0.5
x_c = (boxes[:, 2] + boxes[:, 0]) * 0.5
y_c = (boxes[:, 3] + boxes[:, 1]) * 0.5
w_half *= scale
h_half *= scale
boxes_exp = torch.zeros_like(boxes)
boxes_exp[:, 0] = x_c - w_half
boxes_exp[:, 2] = x_c + w_half
boxes_exp[:, 1] = y_c - h_half
boxes_exp[:, 3] = y_c + h_half
return boxes_exp
@torch.jit.unused
def expand_masks_tracing_scale(M, padding):
# type: (int, int) -> float
return torch.tensor(M + 2 * padding).to(torch.float32) / torch.tensor(M).to(torch.float32)
def expand_masks(mask, padding):
# type: (Tensor, int) -> Tuple[Tensor, float]
M = mask.shape[-1]
if torch._C._get_tracing_state(): # could not import is_tracing(), not sure why
scale = expand_masks_tracing_scale(M, padding)
else:
scale = float(M + 2 * padding) / M
padded_mask = F.pad(mask, (padding,) * 4)
return padded_mask, scale
def paste_mask_in_image(mask, box, im_h, im_w):
# type: (Tensor, Tensor, int, int) -> Tensor
TO_REMOVE = 1
w = int(box[2] - box[0] + TO_REMOVE)
h = int(box[3] - box[1] + TO_REMOVE)
w = max(w, 1)
h = max(h, 1)
# Set shape to [batchxCxHxW]
mask = mask.expand((1, 1, -1, -1))
# Resize mask
mask = F.interpolate(mask, size=(h, w), mode="bilinear", align_corners=False)
mask = mask[0][0]
im_mask = torch.zeros((im_h, im_w), dtype=mask.dtype, device=mask.device)
x_0 = max(box[0], 0)
x_1 = min(box[2] + 1, im_w)
y_0 = max(box[1], 0)
y_1 = min(box[3] + 1, im_h)
im_mask[y_0:y_1, x_0:x_1] = mask[(y_0 - box[1]) : (y_1 - box[1]), (x_0 - box[0]) : (x_1 - box[0])]
return im_mask
def _onnx_paste_mask_in_image(mask, box, im_h, im_w):
one = torch.ones(1, dtype=torch.int64)
zero = torch.zeros(1, dtype=torch.int64)
w = box[2] - box[0] + one
h = box[3] - box[1] + one
w = torch.max(torch.cat((w, one)))
h = torch.max(torch.cat((h, one)))
# Set shape to [batchxCxHxW]
mask = mask.expand((1, 1, mask.size(0), mask.size(1)))
# Resize mask
mask = F.interpolate(mask, size=(int(h), int(w)), mode="bilinear", align_corners=False)
mask = mask[0][0]
x_0 = torch.max(torch.cat((box[0].unsqueeze(0), zero)))
x_1 = torch.min(torch.cat((box[2].unsqueeze(0) + one, im_w.unsqueeze(0))))
y_0 = torch.max(torch.cat((box[1].unsqueeze(0), zero)))
y_1 = torch.min(torch.cat((box[3].unsqueeze(0) + one, im_h.unsqueeze(0))))
unpaded_im_mask = mask[(y_0 - box[1]) : (y_1 - box[1]), (x_0 - box[0]) : (x_1 - box[0])]
# TODO : replace below with a dynamic padding when support is added in ONNX
# pad y
zeros_y0 = torch.zeros(y_0, unpaded_im_mask.size(1))
zeros_y1 = torch.zeros(im_h - y_1, unpaded_im_mask.size(1))
concat_0 = torch.cat((zeros_y0, unpaded_im_mask.to(dtype=torch.float32), zeros_y1), 0)[0:im_h, :]
# pad x
zeros_x0 = torch.zeros(concat_0.size(0), x_0)
zeros_x1 = torch.zeros(concat_0.size(0), im_w - x_1)
im_mask = torch.cat((zeros_x0, concat_0, zeros_x1), 1)[:, :im_w]
return im_mask
@torch.jit._script_if_tracing
def _onnx_paste_masks_in_image_loop(masks, boxes, im_h, im_w):
res_append = torch.zeros(0, im_h, im_w)
for i in range(masks.size(0)):
mask_res = _onnx_paste_mask_in_image(masks[i][0], boxes[i], im_h, im_w)
mask_res = mask_res.unsqueeze(0)
res_append = torch.cat((res_append, mask_res))
return res_append
def paste_masks_in_image(masks, boxes, img_shape, padding=1):
# type: (Tensor, Tensor, Tuple[int, int], int) -> Tensor
masks, scale = expand_masks(masks, padding=padding)
boxes = expand_boxes(boxes, scale).to(dtype=torch.int64)
im_h, im_w = img_shape
if torchvision._is_tracing():
return _onnx_paste_masks_in_image_loop(
masks, boxes, torch.scalar_tensor(im_h, dtype=torch.int64), torch.scalar_tensor(im_w, dtype=torch.int64)
)[:, None]
res = [paste_mask_in_image(m[0], b, im_h, im_w) for m, b in zip(masks, boxes)]
if len(res) > 0:
ret = torch.stack(res, dim=0)[:, None]
else:
ret = masks.new_empty((0, 1, im_h, im_w))
return ret
class RoIHeads(nn.Module):
__annotations__ = {
"box_coder": det_utils.BoxCoder,
"proposal_matcher": det_utils.Matcher,
"fg_bg_sampler": det_utils.BalancedPositiveNegativeSampler,
}
def __init__(
self,
box_roi_pool,
box_head,
box_predictor,
# Faster R-CNN training
fg_iou_thresh,
bg_iou_thresh,
batch_size_per_image,
positive_fraction,
bbox_reg_weights,
# Faster R-CNN inference
score_thresh,
nms_thresh,
detections_per_img,
# Mask
mask_roi_pool=None,
mask_head=None,
mask_predictor=None,
keypoint_roi_pool=None,
keypoint_head=None,
keypoint_predictor=None,
):
super().__init__()
self.box_similarity = box_ops.box_iou
# assign ground-truth boxes for each proposal
self.proposal_matcher = det_utils.Matcher(fg_iou_thresh, bg_iou_thresh, allow_low_quality_matches=False)
self.fg_bg_sampler = det_utils.BalancedPositiveNegativeSampler(batch_size_per_image, positive_fraction)
if bbox_reg_weights is None:
bbox_reg_weights = (10.0, 10.0, 5.0, 5.0)
self.box_coder = det_utils.BoxCoder(bbox_reg_weights)
self.box_roi_pool = box_roi_pool
self.box_head = box_head
self.box_predictor = box_predictor
self.score_thresh = score_thresh
self.nms_thresh = nms_thresh
self.detections_per_img = detections_per_img
self.mask_roi_pool = mask_roi_pool
self.mask_head = mask_head
self.mask_predictor = mask_predictor
self.keypoint_roi_pool = keypoint_roi_pool
self.keypoint_head = keypoint_head
self.keypoint_predictor = keypoint_predictor
def has_mask(self):
if self.mask_roi_pool is None:
return False
if self.mask_head is None:
return False
if self.mask_predictor is None:
return False
return True
def has_keypoint(self):
if self.keypoint_roi_pool is None:
return False
if self.keypoint_head is None:
return False
if self.keypoint_predictor is None:
return False
return True
def assign_targets_to_proposals(self, proposals, gt_boxes, gt_labels):
# type: (List[Tensor], List[Tensor], List[Tensor]) -> Tuple[List[Tensor], List[Tensor]]
matched_idxs = []
labels = []
for proposals_in_image, gt_boxes_in_image, gt_labels_in_image in zip(proposals, gt_boxes, gt_labels):
if gt_boxes_in_image.numel() == 0:
# Background image
device = proposals_in_image.device
clamped_matched_idxs_in_image = torch.zeros(
(proposals_in_image.shape[0],), dtype=torch.int64, device=device
)
labels_in_image = torch.zeros((proposals_in_image.shape[0],), dtype=torch.int64, device=device)
else:
# set to self.box_similarity when https://github.com/pytorch/pytorch/issues/27495 lands
match_quality_matrix = box_ops.box_iou(gt_boxes_in_image, proposals_in_image)
matched_idxs_in_image = self.proposal_matcher(match_quality_matrix)
clamped_matched_idxs_in_image = matched_idxs_in_image.clamp(min=0)
labels_in_image = gt_labels_in_image[clamped_matched_idxs_in_image]
labels_in_image = labels_in_image.to(dtype=torch.int64)
# Label background (below the low threshold)
bg_inds = matched_idxs_in_image == self.proposal_matcher.BELOW_LOW_THRESHOLD
labels_in_image[bg_inds] = 0
# Label ignore proposals (between low and high thresholds)
ignore_inds = matched_idxs_in_image == self.proposal_matcher.BETWEEN_THRESHOLDS
labels_in_image[ignore_inds] = -1 # -1 is ignored by sampler
matched_idxs.append(clamped_matched_idxs_in_image)
labels.append(labels_in_image)
return matched_idxs, labels
def subsample(self, labels):
# type: (List[Tensor]) -> List[Tensor]
sampled_pos_inds, sampled_neg_inds = self.fg_bg_sampler(labels)
sampled_inds = []
for img_idx, (pos_inds_img, neg_inds_img) in enumerate(zip(sampled_pos_inds, sampled_neg_inds)):
img_sampled_inds = torch.where(pos_inds_img | neg_inds_img)[0]
sampled_inds.append(img_sampled_inds)
return sampled_inds
def add_gt_proposals(self, proposals, gt_boxes):
# type: (List[Tensor], List[Tensor]) -> List[Tensor]
proposals = [torch.cat((proposal, gt_box)) for proposal, gt_box in zip(proposals, gt_boxes)]
return proposals
def check_targets(self, targets):
# type: (Optional[List[Dict[str, Tensor]]]) -> None
if targets is None:
raise ValueError("targets should not be None")
if not all(["boxes" in t for t in targets]):
raise ValueError("Every element of targets should have a boxes key")
if not all(["labels" in t for t in targets]):
raise ValueError("Every element of targets should have a labels key")
if self.has_mask():
if not all(["masks" in t for t in targets]):
raise ValueError("Every element of targets should have a masks key")
def select_training_samples(
self,
proposals, # type: List[Tensor]
targets, # type: Optional[List[Dict[str, Tensor]]]
):
# type: (...) -> Tuple[List[Tensor], List[Tensor], List[Tensor], List[Tensor]]
self.check_targets(targets)
if targets is None:
raise ValueError("targets should not be None")
dtype = proposals[0].dtype
device = proposals[0].device
gt_boxes = [t["boxes"].to(dtype) for t in targets]
gt_labels = [t["labels"] for t in targets]
# append ground-truth bboxes to propos
proposals = self.add_gt_proposals(proposals, gt_boxes)
# get matching gt indices for each proposal
matched_idxs, labels = self.assign_targets_to_proposals(proposals, gt_boxes, gt_labels)
# sample a fixed proportion of positive-negative proposals
sampled_inds = self.subsample(labels)
matched_gt_boxes = []
num_images = len(proposals)
for img_id in range(num_images):
img_sampled_inds = sampled_inds[img_id]
proposals[img_id] = proposals[img_id][img_sampled_inds]
labels[img_id] = labels[img_id][img_sampled_inds]
matched_idxs[img_id] = matched_idxs[img_id][img_sampled_inds]
gt_boxes_in_image = gt_boxes[img_id]
if gt_boxes_in_image.numel() == 0:
gt_boxes_in_image = torch.zeros((1, 4), dtype=dtype, device=device)
matched_gt_boxes.append(gt_boxes_in_image[matched_idxs[img_id]])
regression_targets = self.box_coder.encode(matched_gt_boxes, proposals)
return proposals, matched_idxs, labels, regression_targets
def postprocess_detections(
self,
class_logits, # type: Tensor
box_regression, # type: Tensor
proposals, # type: List[Tensor]
image_shapes, # type: List[Tuple[int, int]]
):
# type: (...) -> Tuple[List[Tensor], List[Tensor], List[Tensor]]
device = class_logits.device
num_classes = class_logits.shape[-1]
boxes_per_image = [boxes_in_image.shape[0] for boxes_in_image in proposals]
pred_boxes = self.box_coder.decode(box_regression, proposals)
pred_scores = F.softmax(class_logits, -1)
pred_boxes_list = pred_boxes.split(boxes_per_image, 0)
pred_scores_list = pred_scores.split(boxes_per_image, 0)
all_boxes = []
all_scores = []
all_labels = []
for boxes, scores, image_shape in zip(pred_boxes_list, pred_scores_list, image_shapes):
boxes = box_ops.clip_boxes_to_image(boxes, image_shape)
# create labels for each prediction
labels = torch.arange(num_classes, device=device)
labels = labels.view(1, -1).expand_as(scores)
# remove predictions with the background label
boxes = boxes[:, 1:]
scores = scores[:, 1:]
labels = labels[:, 1:]
# batch everything, by making every class prediction be a separate instance
boxes = boxes.reshape(-1, 4)
scores = scores.reshape(-1)
labels = labels.reshape(-1)
# remove low scoring boxes
inds = torch.where(scores > self.score_thresh)[0]
boxes, scores, labels = boxes[inds], scores[inds], labels[inds]
# remove empty boxes
keep = box_ops.remove_small_boxes(boxes, min_size=1e-2)
boxes, scores, labels = boxes[keep], scores[keep], labels[keep]
# non-maximum suppression, independently done per class
keep = box_ops.batched_nms(boxes, scores, labels, self.nms_thresh)
# keep only topk scoring predictions
keep = keep[: self.detections_per_img]
boxes, scores, labels = boxes[keep], scores[keep], labels[keep]
all_boxes.append(boxes)
all_scores.append(scores)
all_labels.append(labels)
return all_boxes, all_scores, all_labels
def forward(
self,
features, # type: Dict[str, Tensor]
proposals, # type: List[Tensor]
image_shapes, # type: List[Tuple[int, int]]
targets=None, # type: Optional[List[Dict[str, Tensor]]]
):
# type: (...) -> Tuple[List[Dict[str, Tensor]], Dict[str, Tensor]]
"""
Args:
features (List[Tensor])
proposals (List[Tensor[N, 4]])
image_shapes (List[Tuple[H, W]])
targets (List[Dict])
"""
if targets is not None:
for t in targets:
# TODO: https://github.com/pytorch/pytorch/issues/26731
floating_point_types = (torch.float, torch.double, torch.half)
if not t["boxes"].dtype in floating_point_types:
raise TypeError(f"target boxes must of float type, instead got {t['boxes'].dtype}")
if not t["labels"].dtype == torch.int64:
raise TypeError(f"target labels must of int64 type, instead got {t['labels'].dtype}")
if self.has_keypoint():
if not t["keypoints"].dtype == torch.float32:
raise TypeError(f"target keypoints must of float type, instead got {t['keypoints'].dtype}")
if self.training:
proposals, matched_idxs, labels, regression_targets = self.select_training_samples(proposals, targets)
else:
labels = None
regression_targets = None
matched_idxs = None
box_features = self.box_roi_pool(features, proposals, image_shapes)
box_features = self.box_head(box_features)
class_logits, box_regression = self.box_predictor(box_features)
result: List[Dict[str, torch.Tensor]] = []
losses = {}
if self.training:
if labels is None:
raise ValueError("labels cannot be None")
if regression_targets is None:
raise ValueError("regression_targets cannot be None")
loss_classifier, loss_box_reg = fastrcnn_loss(class_logits, box_regression, labels, regression_targets)
losses = {"loss_classifier": loss_classifier, "loss_box_reg": loss_box_reg}
else:
boxes, scores, labels = self.postprocess_detections(class_logits, box_regression, proposals, image_shapes)
num_images = len(boxes)
for i in range(num_images):
result.append(
{
"boxes": boxes[i],
"labels": labels[i],
"scores": scores[i],
}
)
if self.has_mask():
mask_proposals = [p["boxes"] for p in result]
if self.training:
if matched_idxs is None:
raise ValueError("if in training, matched_idxs should not be None")
# during training, only focus on positive boxes
num_images = len(proposals)
mask_proposals = []
pos_matched_idxs = []
for img_id in range(num_images):
pos = torch.where(labels[img_id] > 0)[0]
mask_proposals.append(proposals[img_id][pos])
pos_matched_idxs.append(matched_idxs[img_id][pos])
else:
pos_matched_idxs = None
if self.mask_roi_pool is not None:
mask_features = self.mask_roi_pool(features, mask_proposals, image_shapes)
mask_features = self.mask_head(mask_features)
mask_logits = self.mask_predictor(mask_features)
else:
raise Exception("Expected mask_roi_pool to be not None")
loss_mask = {}
if self.training:
if targets is None or pos_matched_idxs is None or mask_logits is None:
raise ValueError("targets, pos_matched_idxs, mask_logits cannot be None when training")
gt_masks = [t["masks"] for t in targets]
gt_labels = [t["labels"] for t in targets]
rcnn_loss_mask = maskrcnn_loss(mask_logits, mask_proposals, gt_masks, gt_labels, pos_matched_idxs)
loss_mask = {"loss_mask": rcnn_loss_mask}
else:
labels = [r["labels"] for r in result]
masks_probs = maskrcnn_inference(mask_logits, labels)
for mask_prob, r in zip(masks_probs, result):
r["masks"] = mask_prob
losses.update(loss_mask)
# keep none checks in if conditional so torchscript will conditionally
# compile each branch
if (
self.keypoint_roi_pool is not None
and self.keypoint_head is not None
and self.keypoint_predictor is not None
):
keypoint_proposals = [p["boxes"] for p in result]
if self.training:
# during training, only focus on positive boxes
num_images = len(proposals)
keypoint_proposals = []
pos_matched_idxs = []
if matched_idxs is None:
raise ValueError("if in trainning, matched_idxs should not be None")
for img_id in range(num_images):
pos = torch.where(labels[img_id] > 0)[0]
keypoint_proposals.append(proposals[img_id][pos])
pos_matched_idxs.append(matched_idxs[img_id][pos])
else:
pos_matched_idxs = None
keypoint_features = self.keypoint_roi_pool(features, keypoint_proposals, image_shapes)
keypoint_features = self.keypoint_head(keypoint_features)
keypoint_logits = self.keypoint_predictor(keypoint_features)
loss_keypoint = {}
if self.training:
if targets is None or pos_matched_idxs is None:
raise ValueError("both targets and pos_matched_idxs should not be None when in training mode")
gt_keypoints = [t["keypoints"] for t in targets]
rcnn_loss_keypoint = keypointrcnn_loss(
keypoint_logits, keypoint_proposals, gt_keypoints, pos_matched_idxs
)
loss_keypoint = {"loss_keypoint": rcnn_loss_keypoint}
else:
if keypoint_logits is None or keypoint_proposals is None:
raise ValueError(
"both keypoint_logits and keypoint_proposals should not be None when not in training mode"
)
keypoints_probs, kp_scores = keypointrcnn_inference(keypoint_logits, keypoint_proposals)
for keypoint_prob, kps, r in zip(keypoints_probs, kp_scores, result):
r["keypoints"] = keypoint_prob
r["keypoints_scores"] = kps
losses.update(loss_keypoint)
return result, losses