Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Refactor kubernetes scheduler to have a base scheduler #939

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
167 changes: 107 additions & 60 deletions torchx/schedulers/kubernetes_scheduler.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,12 +38,14 @@
Any,
cast,
Dict,
Generic,
Iterable,
List,
Mapping,
Optional,
Tuple,
TYPE_CHECKING,
TypeVar,
)

import torchx
Expand Down Expand Up @@ -453,8 +455,7 @@ def app_to_resource(


@dataclass
class KubernetesJob:
images_to_push: Dict[str, Tuple[str, str]]
class BaseKubernetesJob:
resource: Dict[str, object]

def __str__(self) -> str:
Expand All @@ -472,9 +473,14 @@ class KubernetesOpts(TypedDict, total=False):
priority_class: Optional[str]


class KubernetesScheduler(DockerWorkspaceMixin, Scheduler[KubernetesOpts]):
KO = TypeVar("KO", bound=KubernetesOpts)


class BaseKubernetesScheduler(Generic[KO], Scheduler[KO]):
"""
KubernetesScheduler is a TorchX scheduling interface to Kubernetes.
This scheduler implements the torchx scheduler interface for Kubernetes jobs.
This is the base class that can be shared between different Kubernetes scheduler
implementations that need to support different types of workspaces.

Important: Volcano is required to be installed on the Kubernetes cluster.
TorchX requires gang scheduling for multi-replica/multi-role execution
Expand Down Expand Up @@ -543,31 +549,16 @@ class KubernetesScheduler(DockerWorkspaceMixin, Scheduler[KubernetesOpts]):
request by a small amount to account for the node reserved CPU and memory.
If you run into scheduling issues you may need to reduce the requested CPU
and memory from the host values.

**Compatibility**

.. compatibility::
type: scheduler
features:
cancel: true
logs: true
distributed: true
describe: |
Partial support. KubernetesScheduler will return job and replica
status but does not provide the complete original AppSpec.
workspaces: true
mounts: true
elasticity: Requires Volcano >1.6
"""

def __init__(
self,
backend: str,
session_name: str,
client: Optional["ApiClient"] = None,
docker_client: Optional["DockerClient"] = None,
) -> None:
# NOTE: make sure any new init options are supported in create_scheduler(...)
super().__init__("kubernetes", session_name, docker_client=docker_client)
super().__init__(backend, session_name)

self._client = client

Expand Down Expand Up @@ -604,23 +595,22 @@ def _get_active_context(self) -> Dict[str, Any]:
contexts, active_context = config.list_kube_config_contexts()
return active_context

def schedule(self, dryrun_info: AppDryRunInfo[KubernetesJob]) -> str:
def _schedule(
self,
group: str,
version: str,
namespace: str,
plural: str,
resource: Dict[str, object],
) -> str:
from kubernetes.client.rest import ApiException

cfg = dryrun_info._cfg
assert cfg is not None, f"{dryrun_info} missing cfg"
namespace = cfg.get("namespace") or "default"

images_to_push = dryrun_info.request.images_to_push
self.push_images(images_to_push)

resource = dryrun_info.request.resource
try:
resp = self._custom_objects_api().create_namespaced_custom_object(
group="batch.volcano.sh",
version="v1alpha1",
group=group,
version=version,
namespace=namespace,
plural="jobs",
plural=plural,
body=resource,
)
except ApiException as e:
Expand All @@ -634,33 +624,6 @@ def schedule(self, dryrun_info: AppDryRunInfo[KubernetesJob]) -> str:

return f'{namespace}:{resp["metadata"]["name"]}'

def _submit_dryrun(
self, app: AppDef, cfg: KubernetesOpts
) -> AppDryRunInfo[KubernetesJob]:
queue = cfg.get("queue")
if not isinstance(queue, str):
raise TypeError(f"config value 'queue' must be a string, got {queue}")

# map any local images to the remote image
images_to_push = self.dryrun_push_images(app, cast(Mapping[str, CfgVal], cfg))

service_account = cfg.get("service_account")
assert service_account is None or isinstance(
service_account, str
), "service_account must be a str"

priority_class = cfg.get("priority_class")
assert priority_class is None or isinstance(
priority_class, str
), "priority_class must be a str"

resource = app_to_resource(app, queue, service_account, priority_class)
req = KubernetesJob(
resource=resource,
images_to_push=images_to_push,
)
return AppDryRunInfo(req, repr)

def _validate(self, app: AppDef, scheduler: str) -> None:
# Skip validation step
pass
Expand Down Expand Up @@ -804,6 +767,90 @@ def list(self) -> List[ListAppResponse]:
]


@dataclass
class KubernetesJob(BaseKubernetesJob):
images_to_push: Dict[str, Tuple[str, str]]


class KubernetesScheduler(
DockerWorkspaceMixin, BaseKubernetesScheduler[KubernetesOpts]
):
"""
KubernetesScheduler is a TorchX scheduling interface to Kubernetes
using the DockerWorkspaceMixin.


**Compatibility**

.. compatibility::
type: scheduler
features:
cancel: true
logs: true
distributed: true
describe: |
Partial support. KubernetesScheduler will return job and replica
status but does not provide the complete original AppSpec.
workspaces: true
mounts: true
elasticity: Requires Volcano >1.6
"""

def __init__(
self,
session_name: str,
client: Optional["ApiClient"] = None,
docker_client: Optional["DockerClient"] = None,
) -> None:
# NOTE: make sure any new init options are supported in create_scheduler(...)
super().__init__("kubernetes", session_name, docker_client=docker_client)

self._client = client

def schedule(self, dryrun_info: AppDryRunInfo[KubernetesJob]) -> str:
cfg = dryrun_info._cfg
assert cfg is not None, f"{dryrun_info} missing cfg"
namespace = cfg.get("namespace") or "default"

resource = dryrun_info.request.resource

images_to_push = dryrun_info.request.images_to_push
self.push_images(images_to_push)
return self._schedule(
group="batch.volcano.sh",
version="v1alpha1",
namespace=str(namespace),
plural="jobs",
resource=resource,
)

def _submit_dryrun(self, app: AppDef, cfg: KO) -> AppDryRunInfo[KubernetesJob]:
queue = cfg.get("queue")
if not isinstance(queue, str):
raise TypeError(f"config value 'queue' must be a string, got {queue}")

# map any local images to the remote image
images_to_push = self.dryrun_push_images(app, cast(Mapping[str, CfgVal], cfg))

service_account = cfg.get("service_account")
assert service_account is None or isinstance(
service_account, str
), "service_account must be a str"

priority_class = cfg.get("priority_class")
assert priority_class is None or isinstance(
priority_class, str
), "priority_class must be a str"

resource = app_to_resource(app, queue, service_account, priority_class)

req = KubernetesJob(
resource=resource,
images_to_push=images_to_push,
)
return AppDryRunInfo(req, repr)


def create_scheduler(
session_name: str,
client: Optional["ApiClient"] = None,
Expand Down
Loading