Skip to content

Commit 1ce1f10

Browse files
TroyGardenfacebook-github-bot
authored andcommitted
convert stride_per_key_per_rank to tensor inside KJT (#2959)
Summary: # context * this diff is part of the "variable-batch KJT refactoring" project ([doc](https://fburl.com/gdoc/svfysfai)) * previously the `stride_per_key_per_rank` variable is `List[List[int]] | None` which can't be handled correctly in PT2 IR (torch.export) * this change makes the KJT class variable `_stride_per_key_per_rank` as `torch.IntTensor | None` so it would be compatible with PT2 IR. # equivalency * to check if `self._stride_per_key_per_rank` is `None` this logic is used to differentiate variable_batch case, and should have the same behavior after this diff * to use `self._stride_per_key_per_rank` as `List[List[int]]` most of the callsite use the function to get the list: `def stride_per_key_per_rank(self) -> List[List[int]]:`, and this function is modified to covert the `torch.IntTensor` to list as ` _stride_per_key_per_rank.tolist()`, the results should be the same NOTE: this `self. _stride_per_key_per_rank.tolist()` tensor should always be on CPU since it's effective the meta data of a KJT. For generic torch APIs like `.to(...)`, `record_stream()`, etc. should in general avoid altering this variable. Differential Revision: D74366343
1 parent 949278c commit 1ce1f10

File tree

2 files changed

+33
-24
lines changed

2 files changed

+33
-24
lines changed

torchrec/sparse/jagged_tensor.py

Lines changed: 31 additions & 22 deletions
Original file line numberDiff line numberDiff line change
@@ -1096,13 +1096,15 @@ def _maybe_compute_stride_kjt(
10961096
stride: Optional[int],
10971097
lengths: Optional[torch.Tensor],
10981098
offsets: Optional[torch.Tensor],
1099-
stride_per_key_per_rank: Optional[List[List[int]]],
1099+
stride_per_key_per_rank: Optional[torch.IntTensor],
11001100
) -> int:
11011101
if stride is None:
11021102
if len(keys) == 0:
11031103
stride = 0
1104-
elif stride_per_key_per_rank is not None and len(stride_per_key_per_rank) > 0:
1105-
stride = max([sum(s) for s in stride_per_key_per_rank])
1104+
elif (
1105+
stride_per_key_per_rank is not None and stride_per_key_per_rank.numel() > 0
1106+
):
1107+
stride = int(stride_per_key_per_rank.sum(dim=1).max().item())
11061108
elif offsets is not None and offsets.numel() > 0:
11071109
stride = (offsets.numel() - 1) // len(keys)
11081110
elif lengths is not None:
@@ -1668,14 +1670,15 @@ def _maybe_compute_lengths_offset_per_key(
16681670

16691671
def _maybe_compute_stride_per_key(
16701672
stride_per_key: Optional[List[int]],
1671-
stride_per_key_per_rank: Optional[List[List[int]]],
1673+
stride_per_key_per_rank: Optional[torch.IntTensor],
16721674
stride: Optional[int],
16731675
keys: List[str],
16741676
) -> Optional[List[int]]:
16751677
if stride_per_key is not None:
16761678
return stride_per_key
16771679
elif stride_per_key_per_rank is not None:
1678-
return [sum(s) for s in stride_per_key_per_rank]
1680+
rt: List[int] = stride_per_key_per_rank.sum(dim=1).tolist()
1681+
return rt
16791682
elif stride is not None:
16801683
return [stride] * len(keys)
16811684
else:
@@ -1766,7 +1769,9 @@ def __init__(
17661769
lengths: Optional[torch.Tensor] = None,
17671770
offsets: Optional[torch.Tensor] = None,
17681771
stride: Optional[int] = None,
1769-
stride_per_key_per_rank: Optional[List[List[int]]] = None,
1772+
stride_per_key_per_rank: Optional[
1773+
Union[torch.IntTensor, List[List[int]]]
1774+
] = None,
17701775
# Below exposed to ensure torch.script-able
17711776
stride_per_key: Optional[List[int]] = None,
17721777
length_per_key: Optional[List[int]] = None,
@@ -1788,8 +1793,10 @@ def __init__(
17881793
self._lengths: Optional[torch.Tensor] = lengths
17891794
self._offsets: Optional[torch.Tensor] = offsets
17901795
self._stride: Optional[int] = stride
1791-
self._stride_per_key_per_rank: Optional[List[List[int]]] = (
1792-
stride_per_key_per_rank
1796+
self._stride_per_key_per_rank: Optional[torch.IntTensor] = (
1797+
torch.IntTensor(stride_per_key_per_rank, device="cpu")
1798+
if isinstance(stride_per_key_per_rank, list)
1799+
else stride_per_key_per_rank
17931800
)
17941801
self._stride_per_key: Optional[List[int]] = stride_per_key
17951802
self._length_per_key: Optional[List[int]] = length_per_key
@@ -1816,8 +1823,7 @@ def _init_pt2_checks(self) -> None:
18161823
if self._stride_per_key is not None:
18171824
pt2_checks_all_is_size(self._stride_per_key)
18181825
if self._stride_per_key_per_rank is not None:
1819-
# pyre-ignore [16]
1820-
for s in self._stride_per_key_per_rank:
1826+
for s in self.stride_per_key_per_rank():
18211827
pt2_checks_all_is_size(s)
18221828

18231829
@staticmethod
@@ -2028,7 +2034,7 @@ def from_jt_dict(jt_dict: Dict[str, JaggedTensor]) -> "KeyedJaggedTensor":
20282034
kjt_stride, kjt_stride_per_key_per_rank = (
20292035
(stride_per_key[0], None)
20302036
if all(s == stride_per_key[0] for s in stride_per_key)
2031-
else (None, [[stride] for stride in stride_per_key])
2037+
else (None, torch.IntTensor(stride_per_key, device="cpu").reshape(-1, 1))
20322038
)
20332039
kjt = KeyedJaggedTensor(
20342040
keys=kjt_keys,
@@ -2193,8 +2199,13 @@ def stride_per_key_per_rank(self) -> List[List[int]]:
21932199
Returns:
21942200
List[List[int]]: stride per key per rank of the KeyedJaggedTensor.
21952201
"""
2196-
stride_per_key_per_rank = self._stride_per_key_per_rank
2197-
return stride_per_key_per_rank if stride_per_key_per_rank is not None else []
2202+
# making a local reference to the class variable to make jit.script behave
2203+
_stride_per_key_per_rank = self._stride_per_key_per_rank
2204+
return (
2205+
[]
2206+
if _stride_per_key_per_rank is None
2207+
else _stride_per_key_per_rank.tolist()
2208+
)
21982209

21992210
def variable_stride_per_key(self) -> bool:
22002211
"""
@@ -2514,17 +2525,17 @@ def permute(
25142525

25152526
length_per_key = self.length_per_key()
25162527
permuted_keys: List[str] = []
2517-
permuted_stride_per_key_per_rank: List[List[int]] = []
25182528
permuted_length_per_key: List[int] = []
25192529
permuted_length_per_key_sum = 0
25202530
for index in indices:
25212531
key = self.keys()[index]
25222532
permuted_keys.append(key)
25232533
permuted_length_per_key.append(length_per_key[index])
2524-
if self.variable_stride_per_key():
2525-
permuted_stride_per_key_per_rank.append(
2526-
self.stride_per_key_per_rank()[index]
2527-
)
2534+
_stride_per_key_per_rank = self._stride_per_key_per_rank
2535+
if self.variable_stride_per_key() and _stride_per_key_per_rank is not None:
2536+
permuted_stride_per_key_per_rank = _stride_per_key_per_rank[indices, :]
2537+
else:
2538+
permuted_stride_per_key_per_rank = None
25282539

25292540
permuted_length_per_key_sum = sum(permuted_length_per_key)
25302541
if not torch.jit.is_scripting() and is_non_strict_exporting():
@@ -2576,17 +2587,15 @@ def permute(
25762587
self.weights_or_none(),
25772588
permuted_length_per_key_sum,
25782589
)
2579-
stride_per_key_per_rank = (
2580-
permuted_stride_per_key_per_rank if self.variable_stride_per_key() else None
2581-
)
2590+
25822591
kjt = KeyedJaggedTensor(
25832592
keys=permuted_keys,
25842593
values=permuted_values,
25852594
weights=permuted_weights,
25862595
lengths=permuted_lengths.view(-1),
25872596
offsets=None,
25882597
stride=self._stride,
2589-
stride_per_key_per_rank=stride_per_key_per_rank,
2598+
stride_per_key_per_rank=permuted_stride_per_key_per_rank,
25902599
stride_per_key=None,
25912600
length_per_key=permuted_length_per_key if len(permuted_keys) > 0 else None,
25922601
lengths_offset_per_key=None,

torchrec/sparse/tests/keyed_jagged_tensor_benchmark_lib.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -465,7 +465,7 @@ def bench(
465465
keys=kjt.keys(),
466466
values=kjt._values,
467467
lengths=kjt._lengths,
468-
stride_per_key_per_rank=kjt._stride_per_key_per_rank,
468+
stride_per_key_per_rank=kjt.stride_per_key_per_rank(),
469469
)
470470
vbe_fn_kwargs = fn_kwargs.copy()
471471
if "kjt" in fn_kwargs:
@@ -490,7 +490,7 @@ def bench(
490490
keys=kjt.keys(),
491491
values=kjt._values,
492492
lengths=kjt._lengths,
493-
stride_per_key_per_rank=kjt._stride_per_key_per_rank,
493+
stride_per_key_per_rank=kjt.stride_per_key_per_rank(),
494494
)
495495
vbe_fn_kwargs = fn_kwargs.copy()
496496
if "kjt" in fn_kwargs:

0 commit comments

Comments
 (0)