-
Notifications
You must be signed in to change notification settings - Fork 22.5k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
RuntimeError on torch.unqiue_consecutive
with torch.compile( fullgraph = true)
#113118
Comments
this should be relatively easy to fix, we need to induce a graph break in this case (for most data dependent this already happens, so we'll need to see why it's not here) |
Actually not a bug, do the config |
@ezyang I just encountered a similar issue with Edit: I discovered that import torch
import torch.onnx
torch.onnx.dynamo_export(lambda x: torch.unique(x), torch.arange(10)) error trace:
|
unique2 was aded in #124306, try a nightly |
Using the nightly now gives a different error (so progress?):
|
@ezyang I have locally fixed this in |
Yes please! |
Follow-up to #113118 and #124306. Developed in coordination with the solution to microsoft/onnxscript#1547 This PR adds the missing fake tensor implementation for `aten.unique_dim`, thus enabling tracing and compilation of `torch.unique` when `dim` is not None. Local testing has proceeded with the following simple script (provided that one has checked out the changes in microsoft/onnxscript#1547): ```python import onnx import onnxruntime as ort import logging import numpy as np onnx_program = torch.onnx.dynamo_export( lambda x: torch.unique(x, dim=0, return_inverse=True), torch.arange(10), export_options=torch.onnx.ExportOptions( dynamic_shapes=True, diagnostic_options=torch.onnx.DiagnosticOptions( verbosity_level=logging.DEBUG))) onnx_program.save("torch_unique.onnx") onnx_inputs = onnx_program.adapt_torch_inputs_to_onnx(torch.arange(10)) onnx_outputs = onnx_program(*onnx_inputs) loaded_onnx_program = onnx.load("torch_unique.onnx") onnx.checker.check_model(loaded_onnx_program) ort_session = ort.InferenceSession("torch_unique.onnx") inputs = np.random.randint(0, 10, 10) print(f"Inputs: {inputs}") outputs = ort_session.run(None, { "l_x_": inputs }) print(f"Outputs: {outputs}") print("Success") ``` Co-authored-by: Edward Z. Yang <ezyang@meta.com> Pull Request resolved: #126561 Approved by: https://github.com/ezyang
Follow-up to pytorch#113118 and pytorch#124306. Developed in coordination with the solution to microsoft/onnxscript#1547 This PR adds the missing fake tensor implementation for `aten.unique_dim`, thus enabling tracing and compilation of `torch.unique` when `dim` is not None. Local testing has proceeded with the following simple script (provided that one has checked out the changes in microsoft/onnxscript#1547): ```python import onnx import onnxruntime as ort import logging import numpy as np onnx_program = torch.onnx.dynamo_export( lambda x: torch.unique(x, dim=0, return_inverse=True), torch.arange(10), export_options=torch.onnx.ExportOptions( dynamic_shapes=True, diagnostic_options=torch.onnx.DiagnosticOptions( verbosity_level=logging.DEBUG))) onnx_program.save("torch_unique.onnx") onnx_inputs = onnx_program.adapt_torch_inputs_to_onnx(torch.arange(10)) onnx_outputs = onnx_program(*onnx_inputs) loaded_onnx_program = onnx.load("torch_unique.onnx") onnx.checker.check_model(loaded_onnx_program) ort_session = ort.InferenceSession("torch_unique.onnx") inputs = np.random.randint(0, 10, 10) print(f"Inputs: {inputs}") outputs = ort_session.run(None, { "l_x_": inputs }) print(f"Outputs: {outputs}") print("Success") ``` Co-authored-by: Edward Z. Yang <ezyang@meta.com> Pull Request resolved: pytorch#126561 Approved by: https://github.com/ezyang
🐛 Describe the bug
On eager mode, the func worked as expected behavior. However, encountered a
DynamicOutputShapeException(func)
withtorch.compile
that indicates there is a potential bug.error trace:
Versions
Collecting environment information...
PyTorch version: 2.2.0.dev20231105+cu118
Is debug build: False
CUDA used to build PyTorch: 11.8
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.3 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.22.1
Libc version: glibc-2.35
Python version: 3.9.18 (main, Sep 11 2023, 13:41:44) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.0-86-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.1.105
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA GeForce RTX 2070
GPU 1: NVIDIA GeForce RTX 2070
GPU 2: NVIDIA GeForce RTX 2070
GPU 3: NVIDIA GeForce RTX 2070
Nvidia driver version: 535.104.12
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 32
On-line CPU(s) list: 0-31
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz
CPU family: 6
Model: 63
Thread(s) per core: 2
Core(s) per socket: 8
Socket(s): 2
Stepping: 2
CPU max MHz: 3200.0000
CPU min MHz: 1200.0000
BogoMIPS: 4794.64
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm cpuid_fault epb invpcid_single pti ssbd ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm xsaveopt cqm_llc cqm_occup_llc dtherm ida arat pln pts md_clear flush_l1d
Virtualization: VT-x
L1d cache: 512 KiB (16 instances)
L1i cache: 512 KiB (16 instances)
L2 cache: 4 MiB (16 instances)
L3 cache: 40 MiB (2 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30
NUMA node1 CPU(s): 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled
Vulnerability L1tf: Mitigation; PTE Inversion; VMX conditional cache flushes, SMT vulnerable
Vulnerability Mds: Mitigation; Clear CPU buffers; SMT vulnerable
Vulnerability Meltdown: Mitigation; PTI
Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP conditional, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] numpy==1.26.1
[pip3] pytorch-triton==2.1.0+6e4932cda8
[pip3] torch==2.2.0.dev20231105+cu118
[pip3] torchaudio==2.2.0.dev20231105+cu118
[pip3] torchvision==0.17.0.dev20231105+cu118
[conda] cudatoolkit 11.8.0 h6a678d5_0 defaults
[conda] numpy 1.26.1 pypi_0 pypi
[conda] pytorch-triton 2.1.0+6e4932cda8 pypi_0 pypi
[conda] torch 2.2.0.dev20231105+cu118 pypi_0 pypi
[conda] torchaudio 2.2.0.dev20231105+cu118 pypi_0 pypi
[conda] torchvision 0.17.0.dev20231105+cu118 pypi_0 pypi
cc @ezyang @msaroufim @wconstab @bdhirsh @anijain2305 @zou3519
The text was updated successfully, but these errors were encountered: