-
Notifications
You must be signed in to change notification settings - Fork 23.3k
/
Copy pathtensorexpr_fuser.h
77 lines (66 loc) · 2.58 KB
/
tensorexpr_fuser.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#pragma once
#include <torch/csrc/Export.h>
#include <torch/csrc/jit/ir/ir.h>
#include <memory>
namespace torch {
namespace jit {
struct Graph;
// Run TensorExpressions-based fuser.
// If add_composed_op is true, creates a single operation that
// performs both the runtime check that types align
// and then the dispatch to the kernel/unoptimized graph
TORCH_API void FuseTensorExprs(
std::shared_ptr<Graph>& graph,
size_t min_group_size = 2,
bool add_composed_op = false,
bool fuse_to_dynamic_shapes = false);
TORCH_API void setTensorExprFuserEnabled(bool val);
TORCH_API bool tensorExprFuserEnabled();
TORCH_API void setTensorExprDynamicShapeFusionEnabled(bool val);
TORCH_API bool tensorExprDynamicShapeFusionEnabled();
TORCH_API bool setTexprReductionsEnabled(bool value);
TORCH_API bool texprReductionsEnabled();
TORCH_API void RemoveProfileNodesAndSpecializeTypes(
std::shared_ptr<Graph>& graph);
TORCH_API bool hasTensorTypeSpecialization(Value* v);
TORCH_API void RemoveTensorTypeSpecializations(std::shared_ptr<Graph>& graph);
TORCH_API void removeTensorTypeSpecializations(Block* block);
using tensor_type_converter_t =
c10::function_ref<TensorTypePtr(const TensorTypePtr& t)>;
// inserts a TypeCheck pattern
//
// around the guarded node that has a Subgraph attribute, this inserts a pattern
//
// if TypeCheck(...):
// guarded_node
// else:
// FallbackGraph(...)
//
// The TypeCheck includes the types of all Tensor inputs to the guarded_node,
// as processed by the type_converter, a lambda
// TensorTypePtr(const TensorTypePtr& t). This allows to erase irrelevant
// aspects of the type.
//
// The Fallback graph will have the same subgraph as the guarded node (with the
// expectation that the guarded_node's subgraph will then be optimized.
TORCH_API void insertTypeGuard(
Node* guarded_node,
tensor_type_converter_t type_converter,
c10::Symbol kind);
TORCH_API bool usedOnlyInSize(Value* v);
TORCH_API Value* broadcastSizes(at::ArrayRef<Value*> sizes, AliasDb* db);
namespace tensorexpr {
TORCH_API bool isSupported(Node* node);
/// Get the modifiable custom operator set object.
///
/// For static shapes, if a custom operator has been added to the custom
/// operator set, it will be pulled into the NNC fusion group. But it doesn't
/// work with dynamic shapes unless explicitly register the shape function via
/// `torch::jit::RegisterShapeComputeGraphForSchema` for the custom operator.
///
/// @return Reference of the custome operator set
///
TORCH_API OperatorSet& getCustomOperatorSet();
} // namespace tensorexpr
} // namespace jit
} // namespace torch