|
| 1 | +import pytest |
| 2 | +import torch |
| 3 | + |
| 4 | +from ignite import distributed as idist |
| 5 | +from ignite.engine import Engine |
| 6 | +from ignite.metrics import Accuracy, MetricGroup, Precision |
| 7 | + |
| 8 | +torch.manual_seed(41) |
| 9 | + |
| 10 | + |
| 11 | +def test_update(): |
| 12 | + precision = Precision() |
| 13 | + accuracy = Accuracy() |
| 14 | + |
| 15 | + group = MetricGroup({"precision": Precision(), "accuracy": Accuracy()}) |
| 16 | + |
| 17 | + y_pred = torch.randint(0, 2, (100,)) |
| 18 | + y = torch.randint(0, 2, (100,)) |
| 19 | + |
| 20 | + precision.update((y_pred, y)) |
| 21 | + accuracy.update((y_pred, y)) |
| 22 | + group.update((y_pred, y)) |
| 23 | + |
| 24 | + assert precision.state_dict() == group.metrics["precision"].state_dict() |
| 25 | + assert accuracy.state_dict() == group.metrics["accuracy"].state_dict() |
| 26 | + |
| 27 | + |
| 28 | +def test_output_transform(): |
| 29 | + def drop_first(output): |
| 30 | + y_pred, y = output |
| 31 | + return (y_pred[1:], y[1:]) |
| 32 | + |
| 33 | + precision = Precision(output_transform=drop_first) |
| 34 | + accuracy = Accuracy(output_transform=drop_first) |
| 35 | + |
| 36 | + group = MetricGroup( |
| 37 | + {"precision": Precision(output_transform=drop_first), "accuracy": Accuracy(output_transform=drop_first)} |
| 38 | + ) |
| 39 | + |
| 40 | + y_pred = torch.randint(0, 2, (100,)) |
| 41 | + y = torch.randint(0, 2, (100,)) |
| 42 | + |
| 43 | + precision.update(drop_first(drop_first((y_pred, y)))) |
| 44 | + accuracy.update(drop_first(drop_first((y_pred, y)))) |
| 45 | + group.update(drop_first((y_pred, y))) |
| 46 | + |
| 47 | + assert precision.state_dict() == group.metrics["precision"].state_dict() |
| 48 | + assert accuracy.state_dict() == group.metrics["accuracy"].state_dict() |
| 49 | + |
| 50 | + |
| 51 | +def test_compute(): |
| 52 | + precision = Precision() |
| 53 | + accuracy = Accuracy() |
| 54 | + |
| 55 | + group = MetricGroup({"precision": Precision(), "accuracy": Accuracy()}) |
| 56 | + |
| 57 | + for _ in range(3): |
| 58 | + y_pred = torch.randint(0, 2, (100,)) |
| 59 | + y = torch.randint(0, 2, (100,)) |
| 60 | + |
| 61 | + precision.update((y_pred, y)) |
| 62 | + accuracy.update((y_pred, y)) |
| 63 | + group.update((y_pred, y)) |
| 64 | + |
| 65 | + assert group.compute() == {"precision": precision.compute(), "accuracy": accuracy.compute()} |
| 66 | + |
| 67 | + precision.reset() |
| 68 | + accuracy.reset() |
| 69 | + group.reset() |
| 70 | + |
| 71 | + assert precision.state_dict() == group.metrics["precision"].state_dict() |
| 72 | + assert accuracy.state_dict() == group.metrics["accuracy"].state_dict() |
| 73 | + |
| 74 | + |
| 75 | +@pytest.mark.usefixtures("distributed") |
| 76 | +class TestDistributed: |
| 77 | + def test_integration(self): |
| 78 | + rank = idist.get_rank() |
| 79 | + torch.manual_seed(12 + rank) |
| 80 | + |
| 81 | + n_epochs = 3 |
| 82 | + n_iters = 5 |
| 83 | + batch_size = 10 |
| 84 | + device = idist.device() |
| 85 | + |
| 86 | + y_true = torch.randint(0, 2, size=(n_iters * batch_size,)).to(device) |
| 87 | + y_pred = torch.randint(0, 2, (n_iters * batch_size,)).to(device) |
| 88 | + |
| 89 | + def update(_, i): |
| 90 | + return ( |
| 91 | + y_pred[i * batch_size : (i + 1) * batch_size], |
| 92 | + y_true[i * batch_size : (i + 1) * batch_size], |
| 93 | + ) |
| 94 | + |
| 95 | + engine = Engine(update) |
| 96 | + |
| 97 | + precision = Precision() |
| 98 | + precision.attach(engine, "precision") |
| 99 | + |
| 100 | + accuracy = Accuracy() |
| 101 | + accuracy.attach(engine, "accuracy") |
| 102 | + |
| 103 | + group = MetricGroup({"eval_metrics.accuracy": Accuracy(), "eval_metrics.precision": Precision()}) |
| 104 | + group.attach(engine, "eval_metrics") |
| 105 | + |
| 106 | + data = list(range(n_iters)) |
| 107 | + engine.run(data=data, max_epochs=n_epochs) |
| 108 | + |
| 109 | + assert "eval_metrics" in engine.state.metrics |
| 110 | + assert "eval_metrics.accuracy" in engine.state.metrics |
| 111 | + assert "eval_metrics.precision" in engine.state.metrics |
| 112 | + |
| 113 | + assert engine.state.metrics["eval_metrics"] == { |
| 114 | + "eval_metrics.accuracy": engine.state.metrics["accuracy"], |
| 115 | + "eval_metrics.precision": engine.state.metrics["precision"], |
| 116 | + } |
| 117 | + assert engine.state.metrics["eval_metrics.accuracy"] == engine.state.metrics["accuracy"] |
| 118 | + assert engine.state.metrics["eval_metrics.precision"] == engine.state.metrics["precision"] |
0 commit comments