|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "# Copyright 2025 Arm Limited and/or its affiliates.\n", |
| 10 | + "#\n", |
| 11 | + "# This source code is licensed under the BSD-style license found in the\n", |
| 12 | + "# LICENSE file in the root directory of this source tree." |
| 13 | + ] |
| 14 | + }, |
| 15 | + { |
| 16 | + "cell_type": "markdown", |
| 17 | + "metadata": {}, |
| 18 | + "source": [ |
| 19 | + "# Ethos-U delegate flow example\n", |
| 20 | + "\n", |
| 21 | + "This guide demonstrates the full flow for running a module on Arm Ethos-U using ExecuTorch. \n", |
| 22 | + "Tested on Linux x86_64 and macOS aarch64. If something is not working for you, please raise a GitHub issue and tag Arm.\n", |
| 23 | + "\n", |
| 24 | + "Before you begin:\n", |
| 25 | + "1. (In a clean virtual environment with a compatible Python version) Install executorch using `./install_executorch.sh`\n", |
| 26 | + "2. Install Arm cross-compilation toolchain and simulators using `examples/arm/setup.sh --i-agree-to-the-contained-eula`\n", |
| 27 | + "3. Add Arm cross-compilation toolchain and simulators to PATH using `examples/arm/ethos-u-scratch/setup_path.sh` \n", |
| 28 | + "\n", |
| 29 | + "With all commands executed from the base `executorch` folder.\n", |
| 30 | + "\n", |
| 31 | + "\n", |
| 32 | + "\n", |
| 33 | + "*Some scripts in this notebook produces long output logs: Configuring the 'Customizing Notebook Layout' settings to enable 'Output:scrolling' and setting 'Output:Text Line Limit' makes this more manageable*" |
| 34 | + ] |
| 35 | + }, |
| 36 | + { |
| 37 | + "cell_type": "markdown", |
| 38 | + "metadata": {}, |
| 39 | + "source": [ |
| 40 | + "## AOT Flow\n", |
| 41 | + "\n", |
| 42 | + "The first step is creating the PyTorch module and exporting it. Exporting converts the python code in the module into a graph structure. The result is still runnable python code, which can be displayed by printing the `graph_module` of the exported program. " |
| 43 | + ] |
| 44 | + }, |
| 45 | + { |
| 46 | + "cell_type": "code", |
| 47 | + "execution_count": null, |
| 48 | + "metadata": {}, |
| 49 | + "outputs": [], |
| 50 | + "source": [ |
| 51 | + "import torch\n", |
| 52 | + "\n", |
| 53 | + "class Add(torch.nn.Module):\n", |
| 54 | + " def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:\n", |
| 55 | + " return x + y\n", |
| 56 | + "\n", |
| 57 | + "example_inputs = (torch.ones(1,1,1,1),torch.ones(1,1,1,1))\n", |
| 58 | + "\n", |
| 59 | + "model = Add()\n", |
| 60 | + "model = model.eval()\n", |
| 61 | + "exported_program = torch.export.export_for_training(model, example_inputs)\n", |
| 62 | + "graph_module = exported_program.module()\n", |
| 63 | + "\n", |
| 64 | + "_ = graph_module.print_readable()" |
| 65 | + ] |
| 66 | + }, |
| 67 | + { |
| 68 | + "cell_type": "markdown", |
| 69 | + "metadata": {}, |
| 70 | + "source": [ |
| 71 | + "To run on Ethos-U the `graph_module` must be quantized using the `arm_quantizer`. Quantization can be done in multiple ways and it can be customized for different parts of the graph; shown here is the recommended path for the EthosUBackend. Quantization also requires calibrating the module with example inputs.\n", |
| 72 | + "\n", |
| 73 | + "Again printing the module, it can be seen that the quantization wraps the node in quantization/dequantization nodes which contain the computed quanitzation parameters." |
| 74 | + ] |
| 75 | + }, |
| 76 | + { |
| 77 | + "cell_type": "code", |
| 78 | + "execution_count": null, |
| 79 | + "metadata": {}, |
| 80 | + "outputs": [], |
| 81 | + "source": [ |
| 82 | + "from executorch.backends.arm.arm_backend import ArmCompileSpecBuilder\n", |
| 83 | + "from executorch.backends.arm.quantizer.arm_quantizer import (\n", |
| 84 | + " EthosUQuantizer,\n", |
| 85 | + " get_symmetric_quantization_config,\n", |
| 86 | + ")\n", |
| 87 | + "from torch.ao.quantization.quantize_pt2e import convert_pt2e, prepare_pt2e\n", |
| 88 | + "\n", |
| 89 | + "target = \"ethos-u55-128\"\n", |
| 90 | + "\n", |
| 91 | + "# Create a compilation spec describing the target for configuring the quantizer\n", |
| 92 | + "# Some args are used by the Arm Vela graph compiler later in the example. Refer to Arm Vela documentation for an \n", |
| 93 | + "# explanation of its flags: https://gitlab.arm.com/artificial-intelligence/ethos-u/ethos-u-vela/-/blob/main/OPTIONS.md\n", |
| 94 | + "spec_builder = ArmCompileSpecBuilder().ethosu_compile_spec(\n", |
| 95 | + " target,\n", |
| 96 | + " system_config=\"Ethos_U55_High_End_Embedded\",\n", |
| 97 | + " memory_mode=\"Shared_Sram\",\n", |
| 98 | + " extra_flags=\"--output-format=raw --debug-force-regor\"\n", |
| 99 | + " )\n", |
| 100 | + "compile_spec = spec_builder.build()\n", |
| 101 | + "\n", |
| 102 | + "# Create and configure quantizer to use a symmetric quantization config globally on all nodes\n", |
| 103 | + "quantizer = EthosUQuantizer(compile_spec) \n", |
| 104 | + "operator_config = get_symmetric_quantization_config(is_per_channel=False)\n", |
| 105 | + "quantizer.set_global(operator_config)\n", |
| 106 | + "\n", |
| 107 | + "# Post training quantization\n", |
| 108 | + "quantized_graph_module = prepare_pt2e(graph_module, quantizer) \n", |
| 109 | + "quantized_graph_module(*example_inputs) # Calibrate the graph module with the example input\n", |
| 110 | + "quantized_graph_module = convert_pt2e(quantized_graph_module)\n", |
| 111 | + "\n", |
| 112 | + "_ = quantized_graph_module.print_readable()\n", |
| 113 | + "\n", |
| 114 | + "# Create a new exported program using the quantized_graph_module\n", |
| 115 | + "quantized_exported_program = torch.export.export_for_training(quantized_graph_module, example_inputs)" |
| 116 | + ] |
| 117 | + }, |
| 118 | + { |
| 119 | + "cell_type": "markdown", |
| 120 | + "metadata": {}, |
| 121 | + "source": [ |
| 122 | + "The quantization nodes created in the previous cell are not built by default with ExecuTorch but must be included in the .pte-file, and so they need to be built separately. `backends/arm/scripts/build_quantized_ops_aot_lib.sh` is a utility script which does this. " |
| 123 | + ] |
| 124 | + }, |
| 125 | + { |
| 126 | + "cell_type": "code", |
| 127 | + "execution_count": null, |
| 128 | + "metadata": {}, |
| 129 | + "outputs": [], |
| 130 | + "source": [ |
| 131 | + "import subprocess \n", |
| 132 | + "import os \n", |
| 133 | + "\n", |
| 134 | + "# Setup paths\n", |
| 135 | + "cwd_dir = os.getcwd()\n", |
| 136 | + "et_dir = os.path.join(cwd_dir, \"..\", \"..\")\n", |
| 137 | + "et_dir = os.path.abspath(et_dir)\n", |
| 138 | + "script_dir = os.path.join(et_dir, \"backends\", \"arm\", \"scripts\")\n", |
| 139 | + "\n", |
| 140 | + "# Run build_quantized_ops_aot_lib.sh\n", |
| 141 | + "subprocess.run(os.path.join(script_dir, \"build_quantized_ops_aot_lib.sh\"), shell=True, cwd=et_dir)" |
| 142 | + ] |
| 143 | + }, |
| 144 | + { |
| 145 | + "cell_type": "markdown", |
| 146 | + "metadata": {}, |
| 147 | + "source": [ |
| 148 | + "The lowering in the EthosUBackend happens in five steps:\n", |
| 149 | + "\n", |
| 150 | + "1. **Lowering to core Aten operator set**: Transform module to use a subset of operators applicable to edge devices. \n", |
| 151 | + "2. **Partitioning**: Find subgraphs which are supported for running on Ethos-U\n", |
| 152 | + "3. **Lowering to TOSA compatible operator set**: Perform transforms to make the Ethos-U subgraph(s) compatible with TOSA \n", |
| 153 | + "4. **Serialization to TOSA**: Compiles the graph module into a TOSA graph \n", |
| 154 | + "5. **Compilation to NPU**: Compiles the TOSA graph into an EthosU command stream using the Arm Vela graph compiler. This makes use of the `compile_spec` created earlier.\n", |
| 155 | + "Step 5 also prints a Network summary for each processed subgraph.\n", |
| 156 | + "\n", |
| 157 | + "All of this happens behind the scenes in `to_edge_transform_and_lower`. Printing the graph module shows that what is left in the graph is two quantization nodes for `x` and `y` going into an `executorch_call_delegate` node, followed by a dequantization node." |
| 158 | + ] |
| 159 | + }, |
| 160 | + { |
| 161 | + "cell_type": "code", |
| 162 | + "execution_count": null, |
| 163 | + "metadata": {}, |
| 164 | + "outputs": [], |
| 165 | + "source": [ |
| 166 | + "from executorch.backends.arm.ethosu_partitioner import EthosUPartitioner\n", |
| 167 | + "from executorch.exir import (\n", |
| 168 | + " EdgeCompileConfig,\n", |
| 169 | + " ExecutorchBackendConfig,\n", |
| 170 | + " to_edge_transform_and_lower,\n", |
| 171 | + ")\n", |
| 172 | + "from executorch.extension.export_util.utils import save_pte_program\n", |
| 173 | + "import platform \n", |
| 174 | + "\n", |
| 175 | + "# Create partitioner from compile spec \n", |
| 176 | + "partitioner = EthosUPartitioner(compile_spec)\n", |
| 177 | + "\n", |
| 178 | + "# Lower the exported program to the Ethos-U backend\n", |
| 179 | + "edge_program_manager = to_edge_transform_and_lower(\n", |
| 180 | + " quantized_exported_program,\n", |
| 181 | + " partitioner=[partitioner],\n", |
| 182 | + " compile_config=EdgeCompileConfig(\n", |
| 183 | + " _check_ir_validity=False,\n", |
| 184 | + " ),\n", |
| 185 | + " )\n", |
| 186 | + "\n", |
| 187 | + "# Load quantization ops library\n", |
| 188 | + "os_aot_lib_names = {\"Darwin\" : \"libquantized_ops_aot_lib.dylib\", \n", |
| 189 | + " \"Linux\" : \"libquantized_ops_aot_lib.so\", \n", |
| 190 | + " \"Windows\": \"libquantized_ops_aot_lib.dll\"}\n", |
| 191 | + "aot_lib_name = os_aot_lib_names[platform.system()]\n", |
| 192 | + "\n", |
| 193 | + "libquantized_ops_aot_lib_path = os.path.join(et_dir, \"cmake-out-aot-lib\", \"kernels\", \"quantized\", aot_lib_name)\n", |
| 194 | + "torch.ops.load_library(libquantized_ops_aot_lib_path)\n", |
| 195 | + "\n", |
| 196 | + "# Convert edge program to executorch\n", |
| 197 | + "executorch_program_manager = edge_program_manager.to_executorch(\n", |
| 198 | + " config=ExecutorchBackendConfig(extract_delegate_segments=False)\n", |
| 199 | + " )\n", |
| 200 | + "\n", |
| 201 | + "executorch_program_manager.exported_program().module().print_readable()\n", |
| 202 | + "\n", |
| 203 | + "# Save pte file\n", |
| 204 | + "pte_base_name = \"simple_example\"\n", |
| 205 | + "pte_name = pte_base_name + \".pte\"\n", |
| 206 | + "pte_path = os.path.join(cwd_dir, pte_name)\n", |
| 207 | + "save_pte_program(executorch_program_manager, pte_name)\n", |
| 208 | + "assert os.path.exists(pte_path), \"Build failed; no .pte-file found\"" |
| 209 | + ] |
| 210 | + }, |
| 211 | + { |
| 212 | + "cell_type": "markdown", |
| 213 | + "metadata": {}, |
| 214 | + "source": [ |
| 215 | + "## Build executor runtime\n", |
| 216 | + "\n", |
| 217 | + "After the AOT compilation flow is done, the runtime can be cross compiled and linked to the produced .pte-file using the Arm cross-compilation toolchain. This is done in three steps:\n", |
| 218 | + "1. Build the executorch library and EthosUDelegate.\n", |
| 219 | + "2. Build any external kernels required. In this example this is not needed as the graph is fully delegated, but its included for completeness.\n", |
| 220 | + "3. Build and link the `arm_executor_runner`." |
| 221 | + ] |
| 222 | + }, |
| 223 | + { |
| 224 | + "cell_type": "code", |
| 225 | + "execution_count": null, |
| 226 | + "metadata": {}, |
| 227 | + "outputs": [], |
| 228 | + "source": [ |
| 229 | + "# Build executorch \n", |
| 230 | + "subprocess.run(os.path.join(script_dir, \"build_executorch.sh\"), shell=True, cwd=et_dir)\n", |
| 231 | + "\n", |
| 232 | + "# Build portable kernels\n", |
| 233 | + "subprocess.run(os.path.join(script_dir, \"build_portable_kernels.sh\"), shell=True, cwd=et_dir)\n", |
| 234 | + "\n", |
| 235 | + "# Build executorch runner\n", |
| 236 | + "args = f\"--pte={pte_path} --target={target}\"\n", |
| 237 | + "subprocess.run(os.path.join(script_dir, \"build_executorch_runner.sh\") + \" \" + args, shell=True, cwd=et_dir)\n", |
| 238 | + "\n", |
| 239 | + "elf_path = os.path.join(cwd_dir, pte_base_name, \"cmake-out\", \"arm_executor_runner\")\n", |
| 240 | + "assert os.path.exists(elf_path), \"Build failed; no .elf-file found\"" |
| 241 | + ] |
| 242 | + }, |
| 243 | + { |
| 244 | + "cell_type": "markdown", |
| 245 | + "metadata": {}, |
| 246 | + "source": [ |
| 247 | + "# Run on simulated model\n", |
| 248 | + "\n", |
| 249 | + "We can finally use the `backends/arm/scripts/run_fvp.sh` utility script to run the .elf-file on simulated Arm hardware. This Script runs the model with an input of ones, so the expected result of the addition should be close to 2." |
| 250 | + ] |
| 251 | + }, |
| 252 | + { |
| 253 | + "cell_type": "code", |
| 254 | + "execution_count": null, |
| 255 | + "metadata": {}, |
| 256 | + "outputs": [], |
| 257 | + "source": [ |
| 258 | + "args = f\"--elf={elf_path} --target={target}\"\n", |
| 259 | + "subprocess.run(os.path.join(script_dir, \"run_fvp.sh\") + \" \" + args, shell=True, cwd=et_dir)" |
| 260 | + ] |
| 261 | + } |
| 262 | + ], |
| 263 | + "metadata": { |
| 264 | + "kernelspec": { |
| 265 | + "display_name": "venv", |
| 266 | + "language": "python", |
| 267 | + "name": "python3" |
| 268 | + }, |
| 269 | + "language_info": { |
| 270 | + "codemirror_mode": { |
| 271 | + "name": "ipython", |
| 272 | + "version": 3 |
| 273 | + }, |
| 274 | + "file_extension": ".py", |
| 275 | + "mimetype": "text/x-python", |
| 276 | + "name": "python", |
| 277 | + "nbconvert_exporter": "python", |
| 278 | + "pygments_lexer": "ipython3", |
| 279 | + "version": "3.10.15" |
| 280 | + } |
| 281 | + }, |
| 282 | + "nbformat": 4, |
| 283 | + "nbformat_minor": 4 |
| 284 | +} |
0 commit comments