Skip to content

Commit

Permalink
Update OSS repo (#2033)
Browse files Browse the repository at this point in the history
Summary:

Update the OSS Xtensa repo with more up to date compiler and quantizer things. Introduce a test folder and a conv1d test.

Reviewed By: cccclai

Differential Revision: D54034581
  • Loading branch information
mcremon-meta authored and facebook-github-bot committed Feb 22, 2024
1 parent 20714e7 commit 8739422
Show file tree
Hide file tree
Showing 10 changed files with 663 additions and 107 deletions.
13 changes: 8 additions & 5 deletions docs/source/build-run-xtensa.md
Original file line number Diff line number Diff line change
Expand Up @@ -68,13 +68,14 @@ examples/xtensa/
├── aot
├── kernels
├── ops
├── tests
├── third-party
└── utils
```

***AoT (Ahead-of-Time) Components***:

The AoT folder contains all of the python scripts and functions needed to export the model to an ExecuTorch `.pte` file. In our case, [export_example.py](https://github.com/pytorch/executorch/blob/main/examples/xtensa/aot/export_example.py) defines a model and some example inputs (set to a vector of ones), and runs it through the quantizer (from [quantizer.py](https://github.com/pytorch/executorch/blob/main/examples/xtensa/aot/quantizer.py)). Then a few compiler passes, also defined in [quantizer.py](https://github.com/pytorch/executorch/blob/main/examples/xtensa/aot/quantizer.py), will replace operators with custom ones that are supported and optimized on the chip. Any operator needed to compute things should be defined in [meta_registrations.py](https://github.com/pytorch/executorch/blob/main/examples/xtensa/aot/meta_registrations.py) and have corresponding implemetations in the other folders.
The AoT folder contains all of the python scripts and functions needed to export the model to an ExecuTorch `.pte` file. In our case, [export_example.py](https://github.com/pytorch/executorch/blob/main/examples/xtensa/aot/export_example.py) is an API that takes a model (nn.Module) and representative inputs and runs it through the quantizer (from [quantizer.py](https://github.com/pytorch/executorch/blob/main/examples/xtensa/aot/quantizer.py)). Then a few compiler passes, also defined in [quantizer.py](https://github.com/pytorch/executorch/blob/main/examples/xtensa/aot/quantizer.py), will replace operators with custom ones that are supported and optimized on the chip. Any operator needed to compute things should be defined in [meta_registrations.py](https://github.com/pytorch/executorch/blob/main/examples/xtensa/aot/meta_registrations.py) and have corresponding implemetations in the other folders.

***Operators***:

Expand All @@ -99,13 +100,15 @@ python3 -m examples.portable.scripts.export --model_name="add"

***Quantized Linear***:

The second, more complex model is a quantized [linear](https://pytorch.org/docs/stable/generated/torch.nn.Linear.html) operation. The model is defined [here](https://github.com/pytorch/executorch/blob/main/examples/xtensa/aot/export_example.py#L88). Linear is the backbone of most Automatic Speech Recognition (ASR) models.
The other, more complex model are custom operators, including:
- a quantized [linear](https://pytorch.org/docs/stable/generated/torch.nn.Linear.html) operation. The model is defined [here](https://github.com/pytorch/executorch/blob/main/examples/xtensa/tests/quantized_linear_example.py#L28). Linear is the backbone of most Automatic Speech Recognition (ASR) models.
- a quantized [conv1d](https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html) operation. The model is defined [here](https://github.com/pytorch/executorch/blob/main/examples/xtensa/tests/quantized_conv1d_example.py#L36). Convolutions are important in wake word and many denoising models.

The generated file is called `XtensaDemoModel.pte`.
In both cases the generated file is called `XtensaDemoModel.pte`.

```bash
cd executorch
python3 -m examples.xtensa.aot.export_example
python3 -m examples.xtensa.tests.quantized_<linear,conv1d>_example
```

### Runtime
Expand Down Expand Up @@ -189,6 +192,6 @@ First 20 elements of output 0

In this tutorial, you have learned how to export a quantized operation, build the ExecuTorch runtime and run this model on the Xtensa HiFi4 DSP chip.

The model in this tutorial is a typical operation appearing in ASR models, and can be extended to a complete ASR model by creating the model in [export_example.py](https://github.com/pytorch/executorch/blob/main/examples/xtensa/aot/export_example.py) and adding the needed operators/kernels to [operators](https://github.com/pytorch/executorch/blob/main/examples/xtensa/ops) and [kernels](https://github.com/pytorch/executorch/blob/main/examples/xtensa/kernels).
The (quantized linear) model in this tutorial is a typical operation appearing in ASR models, and can be extended to a complete ASR model by creating the model as a new test and adding the needed operators/kernels to [operators](https://github.com/pytorch/executorch/blob/main/examples/xtensa/ops) and [kernels](https://github.com/pytorch/executorch/blob/main/examples/xtensa/kernels).

Other models can be created following the same structure, always assuming that operators and kernels are available.
25 changes: 3 additions & 22 deletions examples/xtensa/aot/export_example.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,26 +29,7 @@
logging.basicConfig(level=logging.INFO, format=FORMAT)


if __name__ == "__main__":
in_features = 32
out_features = 16
bias = True
shape = [64, in_features]

class QuantizedLinear(torch.nn.Module):
def __init__(self, in_features: int, out_features: int, bias: bool):
super().__init__()
self.output_linear = torch.nn.Linear(in_features, out_features, bias=bias)

def forward(self, x: torch.Tensor):
output_linear_out = self.output_linear(x)
return output_linear_out

model = QuantizedLinear(in_features, out_features, bias)
model.eval()

example_inputs = (torch.ones(shape),)

def export_xtensa_model(model, example_inputs):
# Quantizer
quantizer = XtensaQuantizer()

Expand Down Expand Up @@ -77,14 +58,14 @@ def forward(self, x: torch.Tensor):
export_to_edge(
converted_model_exp,
example_inputs,
EdgeCompileConfig(
edge_compile_config=EdgeCompileConfig(
_check_ir_validity=False,
),
)
.transform(
[ReplacePT2QuantWithXtensaQuant(), ReplacePT2DequantWithXtensaDequant()]
)
.to_executorch(config=ExecutorchBackendConfig(extract_constant_segment=False))
.to_executorch(config=ExecutorchBackendConfig())
)

logging.info(f"Final exported graph:\n{exec_prog.exported_program().graph}")
Expand Down
59 changes: 50 additions & 9 deletions examples/xtensa/aot/meta_registrations.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,10 +4,14 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

from typing import Tuple

import torch
from executorch.exir.scalar_type import ScalarType
from torch.library import impl, Library

from .utils import get_conv1d_output_size

lib = Library("xtensa", "DEF")

lib.define(
Expand All @@ -25,10 +29,17 @@
)

lib.define(
"quantized_linear_pt2(Tensor src, Tensor weight, Tensor bias, float src_scale, int src_zero_point, float weight_scale, int weight_zero_point, Tensor out_multiplier, Tensor out_shift, int out_zero_point) -> (Tensor Z)"
"quantized_linear(Tensor src, Tensor weight, Tensor bias, int src_zero_point, Tensor weight_zero_point, Tensor out_multiplier, Tensor out_shift, int out_zero_point) -> (Tensor Z)"
)
lib.define(
"quantized_linear.out(Tensor src, Tensor weight, Tensor bias, int src_zero_point, Tensor weight_zero_point, Tensor out_multiplier, Tensor out_shift, int out_zero_point, *, Tensor(a!) out) -> Tensor(a!)"
)

lib.define(
"quantized_conv(Tensor input, Tensor weight, Tensor bias, int[] stride, SymInt[] padding, int[] dilation, int groups, int input_zero_point, Tensor weight_zero_point, Tensor bias_scale, float out_scale, int out_zero_point, Tensor out_multiplier, Tensor out_shift, bool channel_last=False) -> (Tensor Z)"
)
lib.define(
"quantized_linear_pt2.out(Tensor src, Tensor weight, Tensor bias, float src_scale, int src_zero_point, float weight_scale, int weight_zero_point, Tensor out_multiplier, Tensor out_shift, int out_zero_point, *, Tensor(a!) out) -> Tensor(a!)"
"quantized_conv.out(Tensor input, Tensor weight, Tensor bias, int[] stride, SymInt[] padding, int[] dilation, int groups, int input_zero_point, Tensor weight_zero_point, Tensor bias_scale, float out_scale, int out_zero_point, Tensor out_multiplier, Tensor out_shift, bool channel_last=False, *, Tensor(a!) out) -> Tensor(a!)"
)

m = Library("xtensa", "IMPL", "Meta")
Expand Down Expand Up @@ -58,17 +69,15 @@ def dequantize_per_tensor_meta(
return input.new_empty(input.size(), dtype=torch.float)


@impl(m, "quantized_linear_pt2")
def quantized_linear_pt2_meta(
@impl(m, "quantized_linear")
def quantized_linear_meta(
src: torch.Tensor,
weight: torch.Tensor,
bias: torch.Tensor,
in_scale: float,
in_zero_point: int,
weight_scale: float,
weight_zero_point: int,
out_multiplier: int,
out_shift: int,
weight_zero_point: torch.Tensor,
out_multiplier: torch.Tensor,
out_shift: torch.Tensor,
out_zero_point: int,
):
# src comes in shape [leading_dims, in_dim]
Expand All @@ -79,3 +88,35 @@ def quantized_linear_pt2_meta(
assert len(weight_size) == 2
out_size[-1] = weight_size[0]
return src.new_empty(out_size, dtype=torch.uint8)


@impl(m, "quantized_conv")
def quantized_conv_meta(
input: torch.Tensor,
weight: torch.Tensor,
bias: torch.Tensor,
stride: Tuple[int],
padding: Tuple[int],
dilation: Tuple[int],
groups: int,
in_zero_point: int,
weight_zero_point: torch.Tensor,
bias_scale: torch.Tensor,
output_scale: float,
output_zero_point: int,
out_multiplier: torch.Tensor,
out_shift: torch.Tensor,
channel_last: bool = False,
):
out_channels, _in_channels, *kernel_size = weight.shape
in_size = input.shape
# Assert that the input tensor has at least 3 dimensions, and at most 6
assert len(in_size) > 2
assert len(in_size) < 6

# Compute the output tensor size
output_size = get_conv1d_output_size(
in_size, out_channels, stride[0], padding[0], dilation[0], kernel_size[0]
)

return input.new_empty(output_size, dtype=input.dtype)
Loading

0 comments on commit 8739422

Please sign in to comment.