|
17 | 17 | using namespace executorch::extension;
|
18 | 18 | using namespace executorch::runtime;
|
19 | 19 |
|
| 20 | +static inline NSString *dataTypeDescription(ExecuTorchDataType dataType) { |
| 21 | + switch (dataType) { |
| 22 | + case ExecuTorchDataTypeByte: |
| 23 | + return @"byte"; |
| 24 | + case ExecuTorchDataTypeChar: |
| 25 | + return @"char"; |
| 26 | + case ExecuTorchDataTypeShort: |
| 27 | + return @"short"; |
| 28 | + case ExecuTorchDataTypeInt: |
| 29 | + return @"int"; |
| 30 | + case ExecuTorchDataTypeLong: |
| 31 | + return @"long"; |
| 32 | + case ExecuTorchDataTypeHalf: |
| 33 | + return @"half"; |
| 34 | + case ExecuTorchDataTypeFloat: |
| 35 | + return @"float"; |
| 36 | + case ExecuTorchDataTypeDouble: |
| 37 | + return @"double"; |
| 38 | + case ExecuTorchDataTypeComplexHalf: |
| 39 | + return @"complexHalf"; |
| 40 | + case ExecuTorchDataTypeComplexFloat: |
| 41 | + return @"complexFloat"; |
| 42 | + case ExecuTorchDataTypeComplexDouble: |
| 43 | + return @"complexDouble"; |
| 44 | + case ExecuTorchDataTypeBool: |
| 45 | + return @"bool"; |
| 46 | + case ExecuTorchDataTypeQInt8: |
| 47 | + return @"qint8"; |
| 48 | + case ExecuTorchDataTypeQUInt8: |
| 49 | + return @"quint8"; |
| 50 | + case ExecuTorchDataTypeQInt32: |
| 51 | + return @"qint32"; |
| 52 | + case ExecuTorchDataTypeBFloat16: |
| 53 | + return @"bfloat16"; |
| 54 | + case ExecuTorchDataTypeQUInt4x2: |
| 55 | + return @"quint4x2"; |
| 56 | + case ExecuTorchDataTypeQUInt2x4: |
| 57 | + return @"quint2x4"; |
| 58 | + case ExecuTorchDataTypeBits1x8: |
| 59 | + return @"bits1x8"; |
| 60 | + case ExecuTorchDataTypeBits2x4: |
| 61 | + return @"bits2x4"; |
| 62 | + case ExecuTorchDataTypeBits4x2: |
| 63 | + return @"bits4x2"; |
| 64 | + case ExecuTorchDataTypeBits8: |
| 65 | + return @"bits8"; |
| 66 | + case ExecuTorchDataTypeBits16: |
| 67 | + return @"bits16"; |
| 68 | + case ExecuTorchDataTypeFloat8_e5m2: |
| 69 | + return @"float8_e5m2"; |
| 70 | + case ExecuTorchDataTypeFloat8_e4m3fn: |
| 71 | + return @"float8_e4m3fn"; |
| 72 | + case ExecuTorchDataTypeFloat8_e5m2fnuz: |
| 73 | + return @"float8_e5m2fnuz"; |
| 74 | + case ExecuTorchDataTypeFloat8_e4m3fnuz: |
| 75 | + return @"float8_e4m3fnuz"; |
| 76 | + case ExecuTorchDataTypeUInt16: |
| 77 | + return @"uint16"; |
| 78 | + case ExecuTorchDataTypeUInt32: |
| 79 | + return @"uint32"; |
| 80 | + case ExecuTorchDataTypeUInt64: |
| 81 | + return @"uint64"; |
| 82 | + default: |
| 83 | + return @"undefined"; |
| 84 | + } |
| 85 | +} |
| 86 | + |
| 87 | +static inline NSString *shapeDynamismDescription(ExecuTorchShapeDynamism dynamism) { |
| 88 | + switch (dynamism) { |
| 89 | + case ExecuTorchShapeDynamismStatic: |
| 90 | + return @"static"; |
| 91 | + case ExecuTorchShapeDynamismDynamicBound: |
| 92 | + return @"dynamicBound"; |
| 93 | + case ExecuTorchShapeDynamismDynamicUnbound: |
| 94 | + return @"dynamicUnbound"; |
| 95 | + default: |
| 96 | + return @"undefined"; |
| 97 | + } |
| 98 | +} |
| 99 | + |
20 | 100 | NSInteger ExecuTorchSizeOfDataType(ExecuTorchDataType dataType) {
|
21 | 101 | return elementSize(static_cast<ScalarType>(dataType));
|
22 | 102 | }
|
@@ -150,6 +230,70 @@ - (BOOL)isEqual:(nullable id)other {
|
150 | 230 | return [self isEqualToTensor:(ExecuTorchTensor *)other];
|
151 | 231 | }
|
152 | 232 |
|
| 233 | +- (NSString *)description { |
| 234 | + std::ostringstream os; |
| 235 | + os << "Tensor {"; |
| 236 | + os << "\n dataType: " << dataTypeDescription(static_cast<ExecuTorchDataType>(_tensor->scalar_type())).UTF8String << ","; |
| 237 | + os << "\n shape: ["; |
| 238 | + const auto& sizes = _tensor->sizes(); |
| 239 | + for (size_t index = 0; index < sizes.size(); ++index) { |
| 240 | + if (index > 0) { |
| 241 | + os << ","; |
| 242 | + } |
| 243 | + os << sizes[index]; |
| 244 | + } |
| 245 | + os << "],"; |
| 246 | + os << "\n strides: ["; |
| 247 | + const auto& strides = _tensor->strides(); |
| 248 | + for (size_t index = 0; index < strides.size(); ++index) { |
| 249 | + if (index > 0) { |
| 250 | + os << ","; |
| 251 | + } |
| 252 | + os << strides[index]; |
| 253 | + } |
| 254 | + os << "],"; |
| 255 | + os << "\n dimensionOrder: ["; |
| 256 | + const auto& dim_order = _tensor->dim_order(); |
| 257 | + for (size_t index = 0; index < dim_order.size(); ++index) { |
| 258 | + if (index > 0) { |
| 259 | + os << ","; |
| 260 | + } |
| 261 | + os << static_cast<int>(dim_order[index]); |
| 262 | + } |
| 263 | + os << "],"; |
| 264 | + os << "\n shapeDynamism: " << shapeDynamismDescription(static_cast<ExecuTorchShapeDynamism>(_tensor->shape_dynamism())).UTF8String << ","; |
| 265 | + auto const count = _tensor->numel(); |
| 266 | + os << "\n count: " << count << ","; |
| 267 | + os << "\n scalars: ["; |
| 268 | + ET_SWITCH_REALHBBF16_TYPES( |
| 269 | + static_cast<ScalarType>(_tensor->scalar_type()), |
| 270 | + nullptr, |
| 271 | + "description", |
| 272 | + CTYPE, |
| 273 | + [&] { |
| 274 | + auto const *pointer = reinterpret_cast<const CTYPE*>(_tensor->unsafeGetTensorImpl()->data()); |
| 275 | + auto const countToPrint = std::min(count, (ssize_t)100); |
| 276 | + for (size_t index = 0; index < countToPrint; ++index) { |
| 277 | + if (index > 0) { |
| 278 | + os << ","; |
| 279 | + } |
| 280 | + if constexpr (std::is_same_v<CTYPE, int8_t> || |
| 281 | + std::is_same_v<CTYPE, uint8_t>) { |
| 282 | + os << static_cast<int>(pointer[index]); |
| 283 | + } else { |
| 284 | + os << pointer[index]; |
| 285 | + } |
| 286 | + } |
| 287 | + if (count > countToPrint) { |
| 288 | + os << ",..."; |
| 289 | + } |
| 290 | + } |
| 291 | + ); |
| 292 | + os << "]"; |
| 293 | + os << "\n}"; |
| 294 | + return @(os.str().c_str()); |
| 295 | +} |
| 296 | + |
153 | 297 | @end
|
154 | 298 |
|
155 | 299 | @implementation ExecuTorchTensor (BytesNoCopy)
|
|
0 commit comments