|
| 1 | +# Copyright (c) Meta Platforms, Inc. and affiliates. |
| 2 | +# All rights reserved. |
| 3 | +# |
| 4 | +# This source code is licensed under the BSD-style license found in the |
| 5 | +# LICENSE file in the root directory of this source tree. |
| 6 | + |
| 7 | +from typing import Dict |
| 8 | + |
| 9 | +import torch |
| 10 | +from executorch.backends.xnnpack._passes.tag_implicit_q_dq_pass import ( |
| 11 | + TagImplicitQDqPass, |
| 12 | +) |
| 13 | +from executorch.backends.xnnpack.operators.node_visitor import ( |
| 14 | + NodeVisitor, |
| 15 | + register_node_visitor, |
| 16 | +) |
| 17 | +from executorch.backends.xnnpack.operators.quant_params import QuantParams |
| 18 | +from executorch.backends.xnnpack.serialization.xnnpack_graph_schema import ( |
| 19 | + XNNConvert, |
| 20 | + XNNGraph, |
| 21 | + XNode, |
| 22 | +) |
| 23 | +from executorch.backends.xnnpack.utils.quant_utils import ( |
| 24 | + is_per_channel_group, |
| 25 | + validate_quant_scales, |
| 26 | + validate_quant_zeropoints, |
| 27 | +) |
| 28 | +from executorch.backends.xnnpack.utils.utils import get_input_node, get_param_tensor |
| 29 | + |
| 30 | + |
| 31 | +class OpStaticQDQNode(NodeVisitor): |
| 32 | + def check_scales_zeropoints(self, node) -> None: |
| 33 | + scales = node.args[1] |
| 34 | + zero_points = node.args[2] |
| 35 | + is_groupwise = is_per_channel_group(node) |
| 36 | + dtype = node.args[-1] |
| 37 | + if is_groupwise: |
| 38 | + dtype = node.args[-3] |
| 39 | + |
| 40 | + if isinstance(scales, torch.fx.Node): |
| 41 | + scales = get_param_tensor(self.exported_program, scales) |
| 42 | + |
| 43 | + if isinstance(zero_points, torch.fx.Node): |
| 44 | + zero_points = get_param_tensor(self.exported_program, zero_points) |
| 45 | + |
| 46 | + try: |
| 47 | + validate_quant_scales(scales) |
| 48 | + validate_quant_zeropoints(zero_points, dtype, is_groupwise) |
| 49 | + except ValueError as e: |
| 50 | + raise ValueError( |
| 51 | + f"Invalid quantization scale or zero point for {node}: {e}" |
| 52 | + ) |
| 53 | + |
| 54 | + def define_node( |
| 55 | + self, |
| 56 | + node: torch.fx.Node, |
| 57 | + xnn_graph: XNNGraph, |
| 58 | + vals_to_ids: Dict[torch.fx.Node, int], |
| 59 | + debug_handle: int, |
| 60 | + ) -> None: |
| 61 | + # check scales and zp are valid |
| 62 | + self.check_scales_zeropoints(node) |
| 63 | + |
| 64 | + |
| 65 | +@register_node_visitor |
| 66 | +class OpDeQuantizePerTensor(OpStaticQDQNode): |
| 67 | + """ |
| 68 | + Dequantize Per Tensor Node visitor |
| 69 | + """ |
| 70 | + |
| 71 | + target = "quantized_decomposed.dequantize_per_tensor.default" |
| 72 | + |
| 73 | + def __init__(self, *args) -> None: |
| 74 | + super().__init__(*args) |
| 75 | + |
| 76 | + def define_node( |
| 77 | + self, |
| 78 | + node: torch.fx.Node, |
| 79 | + xnn_graph: XNNGraph, |
| 80 | + vals_to_ids: Dict[torch.fx.Node, int], |
| 81 | + debug_handle: int, |
| 82 | + ) -> None: |
| 83 | + """ |
| 84 | + We only define a node if it is not an implict dq node |
| 85 | + """ |
| 86 | + # check scales and zp are valid |
| 87 | + super().define_node(node, xnn_graph, vals_to_ids, debug_handle) |
| 88 | + |
| 89 | + if not TagImplicitQDqPass.is_tagged_as_implicit_q_dq(node): |
| 90 | + dq_input = get_input_node(node, 0) |
| 91 | + input_quant_params = QuantParams.from_q_dq_node(node) |
| 92 | + # fp32 output |
| 93 | + self.define_tensor(node, xnn_graph, vals_to_ids) |
| 94 | + output_id = vals_to_ids[node] |
| 95 | + |
| 96 | + # qint8 input |
| 97 | + input_quant_params.is_output = False |
| 98 | + self.define_tensor( |
| 99 | + dq_input, xnn_graph, vals_to_ids, quant_params=input_quant_params |
| 100 | + ) |
| 101 | + input_id = vals_to_ids[dq_input] |
| 102 | + |
| 103 | + ser_node = XNode( |
| 104 | + xnode_union=XNNConvert(input_id=input_id, output_id=output_id, flags=0), |
| 105 | + debug_handle=debug_handle, |
| 106 | + ) |
| 107 | + xnn_graph.xnodes.append(ser_node) |
| 108 | + else: |
| 109 | + # If this node was ignored, then its id is the same as its parent |
| 110 | + dq_input = get_input_node(node, 0) |
| 111 | + if dq_input in vals_to_ids: |
| 112 | + vals_to_ids[node] = vals_to_ids[dq_input] |
| 113 | + |
| 114 | + |
| 115 | +@register_node_visitor |
| 116 | +class OpQuantizePerTensor(OpStaticQDQNode): |
| 117 | + """ |
| 118 | + Quantize Per Tensor Node visitor |
| 119 | + """ |
| 120 | + |
| 121 | + target = "quantized_decomposed.quantize_per_tensor.default" |
| 122 | + |
| 123 | + def __init__(self, *args) -> None: |
| 124 | + super().__init__(*args) |
| 125 | + |
| 126 | + def define_node( |
| 127 | + self, |
| 128 | + node: torch.fx.Node, |
| 129 | + xnn_graph: XNNGraph, |
| 130 | + vals_to_ids: Dict[torch.fx.Node, int], |
| 131 | + debug_handle: int, |
| 132 | + ) -> None: |
| 133 | + """ |
| 134 | + We only define a node if it is not an implict q node |
| 135 | + """ |
| 136 | + # check scales and zp are valid |
| 137 | + super().define_node(node, xnn_graph, vals_to_ids, debug_handle) |
| 138 | + |
| 139 | + q_input = get_input_node(node, 0) |
| 140 | + if not TagImplicitQDqPass.is_tagged_as_implicit_q_dq(node): |
| 141 | + input_quant_params = QuantParams.from_q_dq_node(node) |
| 142 | + # fp32 input |
| 143 | + self.define_tensor(q_input, xnn_graph, vals_to_ids) |
| 144 | + input_id = vals_to_ids[q_input] |
| 145 | + |
| 146 | + # qint8 output |
| 147 | + input_quant_params.q_input = node |
| 148 | + input_quant_params.is_input = False |
| 149 | + self.define_tensor( |
| 150 | + node, xnn_graph, vals_to_ids, quant_params=input_quant_params |
| 151 | + ) |
| 152 | + output_id = vals_to_ids[node] |
| 153 | + |
| 154 | + ser_node = XNode( |
| 155 | + xnode_union=XNNConvert(input_id=input_id, output_id=output_id, flags=0), |
| 156 | + debug_handle=debug_handle, |
| 157 | + ) |
| 158 | + xnn_graph.xnodes.append(ser_node) |
| 159 | + else: |
| 160 | + # If this node was ignored, then its id is the same as its parents |
| 161 | + if q_input in vals_to_ids: |
| 162 | + vals_to_ids[node] = vals_to_ids[q_input] |
| 163 | + |
| 164 | + |
| 165 | +@register_node_visitor |
| 166 | +class OpDequantizePerChannelDefault(OpStaticQDQNode): |
| 167 | + """ |
| 168 | + do nothing if node is dequantize_per_channel.default |
| 169 | + """ |
| 170 | + |
| 171 | + target = "quantized_decomposed.dequantize_per_channel.default" |
| 172 | + |
| 173 | + |
| 174 | +@register_node_visitor |
| 175 | +class OpQuantizePerChannelDefault(OpStaticQDQNode): |
| 176 | + """ |
| 177 | + do nothing if node is quantize_per_channel.default |
| 178 | + """ |
| 179 | + |
| 180 | + target = "quantized_decomposed.quantize_per_channel.default" |
| 181 | + |
| 182 | + |
| 183 | +@register_node_visitor |
| 184 | +class OpQuantizePerChannelGroupDefault(OpStaticQDQNode): |
| 185 | + """ |
| 186 | + do nothing if node is quantize_per_channel_group.default |
| 187 | + """ |
| 188 | + |
| 189 | + target = "quantized_decomposed.quantize_per_channel_group.default" |
| 190 | + |
| 191 | + |
| 192 | +@register_node_visitor |
| 193 | +class OpDequantizePerChannelGroupDefault(OpStaticQDQNode): |
| 194 | + """ |
| 195 | + do nothing if node is dequantize_per_channel_group.default |
| 196 | + """ |
| 197 | + |
| 198 | + target = "quantized_decomposed.dequantize_per_channel_group.default" |
0 commit comments