Skip to content

Add test for torch.export.export #213

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
May 4, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
54 changes: 49 additions & 5 deletions test/integration/test_integration.py
Original file line number Diff line number Diff line change
Expand Up @@ -1428,6 +1428,7 @@ class TestAOTI(unittest.TestCase):
@parameterized.expand(
list(itertools.product(TENSOR_SUBCLASS_APIS, COMMON_DEVICES, COMMON_DTYPES)),
)
@run_supported_device_dtype
def test_aoti(self, api, test_device, test_dtype):
if not TORCH_VERSION_AFTER_2_4:
self.skipTest("aoti compatibility requires 2.4+.")
Expand All @@ -1442,11 +1443,6 @@ def test_aoti(self, api, test_device, test_dtype):
if test_dtype != torch.bfloat16:
self.skipTest(f"{api} in {test_dtype} is not support for aoti compilation yet")

if test_device == "cuda" and not torch.cuda.is_available():
self.skipTest(f"Need CUDA available.")
if test_device == "cuda" and torch.cuda.is_available() and test_dtype == torch.bfloat16 and torch.cuda.get_device_capability() < (8, 0):
self.skipTest("Need CUDA and SM80+ available.")

m, k, n = 32, 64, 32

class test_model(nn.Module):
Expand Down Expand Up @@ -1479,5 +1475,53 @@ def forward(self, x):
torch._export.aot_compile(model, example_inputs)


class TestExport(unittest.TestCase):
@parameterized.expand(
list(itertools.product(TENSOR_SUBCLASS_APIS, COMMON_DEVICES, COMMON_DTYPES)),
)
@run_supported_device_dtype
def test_aoti(self, api, test_device, test_dtype):
if not TORCH_VERSION_AFTER_2_4:
self.skipTest("aoti compatibility requires 2.4+.")

logger.info(f"TestExport: {api}, {test_device}, {test_dtype}")

if test_dtype != torch.bfloat16:
self.skipTest(f"{api} in {test_dtype} is not support for aoti compilation yet")

m, k, n = 32, 64, 32

class test_model(nn.Module):
def __init__(self):
super().__init__()
self.lin1 = nn.Linear(k, n)
self.relu = nn.ReLU()
self.lin2 = nn.Linear(n, n)

def forward(self, x):
x = self.lin1(x)
x = self.relu(x)
x = self.lin2(x)
return x

x = torch.randn(m, k, dtype=test_dtype, device=test_device)

# get float reference
model = test_model().to(dtype=test_dtype, device=test_device).eval()
ref_f = model(x)

kwargs = {"dtype": test_dtype}
api(model, **kwargs)

# running model
ref = model(x)

# make sure it compiles
example_inputs = (x,)
model = torch.export.export(model, example_inputs).module()
after_export = model(x)
self.assertTrue(torch.equal(after_export, ref))


if __name__ == "__main__":
unittest.main()
Loading